哌嗪量对聚酰胺复合纳滤膜性能的影响 |
作者:李俊俊1,陈涛1,刘逸2,程新1,谭惠芬1,潘巧明1 |
单位: 1,蓝星(杭州)膜工业有限公司,杭州 311106; 2,国家海洋局第二海洋研究所,杭州 310012 |
关键词: 纳滤膜;聚哌嗪酰胺;界面聚合;阳离子 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2018,38(6):1-7 |
摘要: |
在界面聚合制备聚哌嗪酰胺复合纳滤膜的过程中,研究了水相单体浓度和接触时间对膜性能的影响。水相单体采用哌嗪,浓度范围为0.1%~0.5%,接触时间范围为60~120 s。获得的系列纳滤膜分别进行了脱盐性能测试、红外光谱、表面Zeta电位等分析。结果显示,通过增加哌嗪单体浓度或者延长水相接触时间,均提高了底膜中哌嗪的量,具体地从52 mg/m2上升至389 mg/ m2,同时,纳滤膜对氯化钙的截留率从4%上升至96%。结构分析后得出结论,界面聚合形成的聚酰胺量是影响纳滤膜对氯化钙截留率的主要原因。 |
The effects of piperazine concentration and aqueous contact time on the performance of composite nanofiltration membrane are studied. The mass fraction of piperazine is between 0.1% and 0.5%. The contact time of aqueous phase is between 60 s and 120 s. The obtained membranes were characterized with desalination test, infrared spectrum and zeta potential. The results show that, both the addition of concentration and aqueous contact time increase the amount of piperazine on base membrane, and ultimately improve the rejection of calcium chloride from 4% to 96%. The amount of polyamide layer formed from interfacial polymerization is a key structure factor to the increasement of the rejection of calcium chloride. |
基金项目: |
国家重点研发计划项目(2017YFC0403702) |
作者简介: |
第一作者简介:李俊俊(1984-),男,浙江省东阳市人,高级工程师,博士,从事液体分离膜研究与产业化,E-mail:lijj@chinawatertech.com。 通讯作者,E-mail:panqm@chinawatertech.com。 |
参考文献: |
[1] Petersen R J. Composite reverse osmosis and nanofiltration membranes[J]. J Membr Sci, 1993, 83(1):81-150. [2] Hilal N, Al-Zoubi H, Darwish N A, et al. A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy[J]. Desalination, 2004, 170(3):281-308. [3] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356(1):226-254. [4] Amy E. Childress, Menachem Elimelech. Relating Nanofiltration Membrane Performance to Membrane Charge (Electrokinetic) Characteristics[J]. Environ Sci Technol, 2000, 34(17):3710-3716. [5] Bowen, W. R. & Mukhtar, H. Characterisation and prediction of separation performance of nanofiltration membranes[J]. J Membr Sci, 1996, 112(2):263-274. [6] Mohammad A W, Hilal N, Al-Zoubi H, et al. Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes[J]. J Membr Sci, 2007, 289(1/2):40-50. [7] Morgan P W, Kwolek S L. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces[J]. J Polym Sci Part A: Polym Chem, 1996, 34(4):531–559. [8] Freger V. Kinetics of Film Formation by Interfacial Polycondensation[J]. Langmuir, 2005, 21(5):1884. [9] Nadler R, Srebnik S. Molecular simulation of polyamide synthesis by interfacial polymerization[J]. J Membr Sci, 2008, 315(1):100-105. [10] 叶谦, 李俊俊, 韩子龙,等. N,N′-双(3-氨丙基)甲胺为单体制备荷正电复合纳滤膜及其脱盐性能[J]. 膜科学与技术, 2016, 36(5):53-59. [11] 韩子龙, 李俊俊, 叶谦,等. N,N'-双(3-氨丙基)甲胺为单体的荷正电复合纳滤膜的制备与表征[J]. 膜科学与技术, 2016, 36(4):24-29. [12] Huang R, Chen G, Sun M, et al. Preparation and characterization of quaterinized chitosan/poly(acrylonitrile) composite nanofiltration membrane from anhydride mixture cross-linking[J]. Sep Purif Technol, 2008, 58(3):393-399. [13] Huang R, Chen G, Sun M, et al. Preparation and characterization of composite NF membrane from a graft copolymer of trimethylallyl ammonium chloride onto chitosan by toluene diisocyanate cross-linking[J]. Desalination, 2009, 239(1):38-45. [14] 李欣, 沈敏雅, 杨倩,等. 对甲基苯磺酰氯柱前衍生法测定水中哌嗪[J]. 分析试验室, 2012, 31(12):48-52. [15] Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes : I. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1):149-167. [16] Akin O, Temelli F. Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM[J]. Desalination, 2011, 278(1/3):387-396. [17] 谭惠芬, 李俊俊, 岳鑫业,等. 商品化聚酰胺膜的ATR-FTIR和XPS表面分析技术[J]. 膜科学与技术, 2015, 35(6):22-27. [18] 王伟, 戚晶云, 陈宽,等. 热处理对聚哌嗪酰胺复合纳滤膜性能的影响[J]. 水处理技术, 2016, 42(1):79-82. [19] Rao A P, Joshi S V, Trivedi J J, et al. Structure–performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation[J]. J Membr Sci, 2003, 211(1):13-24. [20] Kamada T, Ohara T, Shintani T, et al. Optimizing the preparation of multi-layered polyamide membrane via the addition of a co-solvent[J]. J Membr Sci, 2014, 453(3):489-497. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号