超声辅助的溶胶-凝胶法制备ZrO2纳滤膜 |
作者:严强,陈奕山,邱鸣慧,陈献富,范益群 |
单位: 南京工业大学 化工学院 材料化学工程国家重点实验室, 南京210009 |
关键词: 超声;溶胶-凝胶法;ZrO2;陶瓷膜;纳滤 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2018,38(6):90-96 |
摘要: |
提出采用超声辅助的溶胶-凝胶法制备ZrO2纳滤膜.采用水作为溶剂,通过在溶胶的制备过程中引入超声场,避免了沉淀的产生.在前驱体水解阶段实现了对溶胶粒径的控制,获得了平均粒径为1~2 nm的ZrO2颗粒溶胶.超声场的引入不仅可以促进ZrO2颗粒溶胶的形成,还有利于提高ZrO2材料的热稳定性.经400 °C煅烧后,获得四方相ZrO2纳滤膜,膜层光滑完整无缺陷,膜厚较薄,约为250 nm.纳滤膜表现出较高的分离性能和渗透性能,对PEG的截留分子量为600 Da左右,对应的Stokes直径约为1.2 nm,纯水渗透率为200~250 L·m-2·h-1·MPa-1.初步考察了ZrO2纳滤膜在低聚果糖纯化中的应用,用于脱除低聚果糖中的单糖和二糖组分. |
Ultrasound-assisted sol-gel method was proposed for the fabrication of ZrO2 nanofiltration membranes by using water as the solvent. Due to the introduction of ultrasound in the preparation of the colloidal sol, the phenomena of precipitation was avoided. Since the colloidal size was controlled in the hydrolysis stage of the precursor, the ZrO2 colloidal sol with an average particle size of 1~2 nm was obtained. The introduction of ultrasound can not only promote the formation of ZrO2 sol with nanosized colloids, but also help to improve the thermal stability of obtained ZrO2 materials. After been calcinated at 400 °C for 2 h, ZrO2 nanofiltration membrane with a pure tetragonal phase was obtained. The surface of obtained nanofiltration membrane was smooth and defects-free. The thickness of membrane layer was as thin as about 250 nm. The nanofiltration membranes exhibited high separation accuracy and permeation flux. The molecular weight cut off for PEG was 600 Da corresponding to a Stokes diameter of 1.2 nm. The pure water permeability was 200~250 L·m-2·h-1·MPa-1. The application of ZrO2 nanofiltration membrane in the purification of fructo-oligosaccharide was preliminary investigated to remove monosaccharide and disaccharide components from the solution. |
基金项目: |
国家自然科学基金(91534108, 21506093);国家重点研发计划项目(2016YFC0205700);国家高技术研究发展计划项目(2012AA03A606);江苏高等教育重点学科建设项目(PAPD);江苏省自然科学基金(BK20150947). |
作者简介: |
作者简介:严强(1993-),男,江苏江阴人,硕士,研究方向为膜分离.*通讯联系人 |
参考文献: |
[1] Van Gestel T, Kruidhof H, Blank D H A, et al. ZrO2 and TiO2 membranes for nanofiltration and pervaporation[J]. Journal of Membrane Science, 2006, 284(1+2): 128-136. [2] Larbot A, Alami Younssi S, Persin M, et al. Preparation of a γ-alumina nanofiltration membrane[J]. Journal of Membrane Science, 1994, 97: 167-173. [3] Kuzniatsova T, Mottern M L, Shqau K, et al. Micro-structural optimization of supported gamma-alumina membranes[J]. Journal of Membrane Science, 2008, 316(1-2): 80-88. [4] Puhlfürß P, Voigt A, Weber R, et al. Microporous TiO2 membranes with a cut off < 500 Da[J]. Journal of Membrane Science, 2000, 174(1): 123-133. [5] Cai Y, Wang Y, Chen X, et al. Modified colloidal sol-gel process for fabrication of titania nanofiltration membranes with organic additives[J]. Journal of Membrane Science, 2015, 476: 432-441. [6] Da X, Chen X, Sun B, et al. Preparation of zirconia nanofiltration membranes through an aqueous sol–gel process modified by glycerol for the treatment of wastewater with high salinity[J]. Journal of Membrane Science, 2016, 504: 29-39. [7] Qi H, Zhu G, Li L, et al. Fabrication of a sol-gel derived microporous zirconia membrane for nanofiltration[J]. Journal of Sol-Gel Science and Technology, 2012, 62(2): 208-216. [8] Blanc P, Larbot A, Palmeri J, et al. Hafnia ceramic nanofiltration membranes. Part I: Preparation and characterization[J]. Journal of Membrane Science, 1998, 149(2): 151-161. [9] Lu Y W, Chen T, Chen X F, et al. Fabrication of TiO2-doped ZrO2 nanofiltration membranes by using a modified colloidal sol-gel process and its application in simulative radioactive effluent[J]. Journal of Membrance Science, 2016, 509: 29-39. [10] Tsuru T, Wada S-i, Izumi S, et al. Silica–zirconia membranes for nanofiltration[J]. Journal of Membrane Science, 1998, 149(1): 127-135. [11] Yang C, Zhang G S, Xu N P, et al. Preparation and application in oil-water separation of ZrO2/alpha-Al2O3 MF membrane[J]. Journal of Membrane Science, 1998, 142(2): 235-243. [12] Zhou J-e, Chang Q, Wang Y, et al. Separation of stable oil-water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane[J]. Separation and Purification Technology, 2010, 75(3): 243-248. [13] 徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用[M]. 北京: 化学工业出版社, 2003. [14] Sakka S. Handbook of sol-gel science and technology: processing, characterization and applications[M]. Holland: Kluwer Academic Publishers, 2005. [15] Chen X, Zhang W, Lin Y, et al. Preparation of high-flux gamma-alumina nanofiltration membranes by using a modified sol-gel method[J]. Microporous and Mesoporous Materials, 2015, 214: 195-203. [16] Da X, Wen J, Lu Y, et al. An aqueous sol–gel process for the fabrication of high-flux YSZ nanofiltration membranes as applied to the nanofiltration of dye wastewater[J]. Separation and Purification Technology, 2015, 152: 37-45. [17] Pinjari D V, Prasad K, Gogate P R, et al. Synthesis of titanium dioxide by ultrasound assisted sol-gel technique: Effect of calcination and sonication time[J]. Ultrasonics Sonochemistry, 2015, 23: 185-191. [18] Guel M L A, Jiménez L D, Hernández D A C. Ultrasound-assisted sol-gel synthesis of ZrO2[J]. Ultrasonics Sonochemistry, 2017, 35: 514-517. [19] Pinjari D V, Prasad K, Gogate P R, et al. Intensification of synthesis of zirconium dioxide using ultrasound: Effect of amplitude variation[J]. Chemical Engineering and Processing, 2013, 74: 178-186. [20] Patil M N, Pandit A B. Cavitation – A novel technique for making stable nano-suspensions[J]. Ultrasonics Sonochemistry, 2007, 14(5): 519-530. [21] Tsai M L, Bai S W, Chen R H. Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle[J]. Carbohydrate Polymers, 2008, 71(3): 448-457. [22] Bang J H, Suslick K S. Applications of ultrasound to the synthesis of nanostructured materials[J]. Advanced Materials, 2010, 22(10): 1039-1059. [23] Jung S-H, Oh E, Lee K-H, et al. Sonochemical preparation of shape-selective ZnO nanostructures[J]. Crystal Growth & Design, 2008, 8(1): 265-269. [24] 杜娟, 李伟, 金学军, 等. 四方相纳米氧化锆低温稳定机制的研究现状[J]. 功能材料, 2006, 37(11): 1691-1696. [25] 许红亮, 卢红霞, 王海龙, 等. 四方相氧化锆粉体制备工艺研究[J]. 中国陶瓷, 2008, 44(6): 43-44+60. [26] 刘继进, 陈宗璋. 煅烧方式对草酸盐前驱体制备氧化锆性能的影响[J]. 中国有色金属学报, 2004, 14(11): 1833-1838. [27] 常鹰, 李溪滨. 球形纳米氧化锆粉末的制备[J]. 中南大学学报(自然科学版), 2007, 37(1): 46-50. [28] Dobrak A, Verrecht B, Van den Dungen H, et al. Solvent flux behavior and rejection characteristics of hydrophilic and hydrophobic mesoporous and microporous TiO2 and ZrO2 membranes[J]. Journal of Membrane Science, 2010, 346(2): 344-352. [29] Etienne J, Larbot A, Julbe A, et al. A microporous zirconia membrane prepared by the sol-gel process from zirconyl oxalate[J]. Journal of Membrane Science, 1994, 86: 95-102. [30] Marciano S, Mugnier N, Clerin P, et al. Nanofiltration of Bayer process solutions[J]. Journal of Membrane Science, 2006, 281(1-2): 260-267. [31] Buekenhoudt A, Bisignano F, De Luca G, et al. Unravelling the solvent flux behaviour of ceramic nanofiltration and ultrafiltration membranes[J]. Journal of Membrane Science, 2013, 439: 36-47. [32] 刘宗利, 李克文, 王京博, 等. 低聚果糖的理化特性、生理功效及其应用[J]. 中国食品添加剂, 2016, 10: 211-215. [33] 米运宏, 邓梁华, 黄扩宇. 高纯度低聚果糖制备研究进展[J]. 广西轻工业, 2007, 99(2): 25-26. [34] 刘彬, 曹栋, 孟庆然. 超滤技术结合大孔吸附树脂纯化低聚果糖[J]. 食品与机械, 2016, 32(2): 133-138. [35] Li W Y, Li J D, Chen T Q, et al. Study on nanofiltration for purifying fructo-oligosaccharides I. Operation modes[J]. Journal of Membrane Science, 2004, 245(1-2): 123-129. [36] Li W Y, Li J D, Chen T Q, et al. Study on nanofiltration for purifying fructo-oligosaccharides II. Extended pore model[J]. Journal of Membrane Science, 2005, 258(1-2): 8-15. [37] 王晓琳. 纳滤膜分离机理及其应用研究进展[J]. 化学通报, 2001, 2: 86-90. [38] 王晓琳, 涂丛慧, 方彦彦, 等. 纳滤膜孔结构、荷电性质、分离机理及动电性质研究进展[J]. 膜科学与技术, 2011, 31(3): 127-134. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号