高耐碱性交联型聚苯醚阴离子交换膜的制备 |
作者:杨谦,张瑜兰,张秋根,朱爱梅,刘庆林 |
单位: 厦门大学 化学化工学院,厦门 361000 |
关键词: 燃料电池;交联型;耐碱性;阴离子交换膜 |
DOI号: |
分类号: O632.7 |
出版年,卷(期):页码: 2020,40(1):16-22 |
摘要: |
以聚苯醚(PPO)为主链, N,N-二甲基己胺(DMHA),N,N-二异丙基乙胺(DIEA)和三乙胺(TEA)为季铵化试剂,N,N,N',N'-四甲基-1,6-己二胺为交联剂制备了一系列交联型阴离子交换膜(AEMs),并对交联膜物理和电化学性能进行了表征与测试。结果表明膜具有明显的微相分离结构、高的离子电导率、优异的尺寸稳定性和化学稳定性。其中接枝N,N-二异丙基乙胺的膜(c-PPO-DIEA)离子电导率在80 °C下可达到72.3 mS/cm。在1 M NaOH中经480 h的耐碱性测试发现,膜c-PPO-DIEA的离子电导率能够保留80%以上,表现出良好的耐碱性。将该膜组装成单电池测试,开路电压为0.983 V,在80 oC下电流密度200 mA/cm2时其功率密度达到89 mW/cm2。 |
To improve the comprehensive performance of anion exchange membranes (AEMs) for fuel cells, a seires of AEMs with different functional groups was designed and prepared. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was used as backbone, and 1,6-bis-(dimethylamino)-hexane (TMHDA) was used as crosslinker. Then structures and electrochemical performance of prepared AEMs were investigated. The results show that all AEMs have good hydroxide conductivity, satisfactory dimensional stability and high chemical stability. Among them, the c-PPO-DIEA membrane has the highest ionic conductivity (72.3 mS/cm, 80 °C). Moreover, ionic conductivity of this kind of AEM can still remain 80.2% after immersing in alkaline solution for 20 days, showing alkaline resistance. In conclusion, the c-PPO-DIEA AEM shows a great potential for application in fuel cells. |
基金项目: |
国家自然基金面上项目(21576226 & 21878252) |
作者简介: |
第一作者简介:杨谦(1989-),男,甘肃省西和县人,博士生,从事功能膜材料的制备 通讯作者简介:刘庆林,Email:qlliu@xmu.edu.cn |
参考文献: |
[1] 林陈晓,张秋根,朱爱梅,等.燃料电池用阴离子交换膜:基于优化离子电导率的结构调控研究[J].膜科学与技术,2015,35(5):102-108. [2] Wang L Q, Magliocca E, Cunningham E L, et al. An optimised synthesis of high performance radiation-grafted anion-exchange membranes [J], Green Chem, 2017, 19 (3): 831-843. [3] Zhu L, Pan J, Wang Y, Han J J, et al. Multication side chain anion exchange membranes [J], Macromolecules, 2016, 49 (3): 815-824. [4] Pan J, Han J J, Zhu L, et al. Cationic side-chain attachment to poly(phenylene oxide) backbones for chemically stable and cond uctive anion exchange membranes[J], Chem Mater, 2017, 29 (12): 5321-5330. [5] Chen C, Tse Y L S, Lindberg G E, et al. Hydroxide solvation and transport in anion exchange membranes[J], J Am Chem Soc, 2016, 138 (3): 991-1000. [6] Park A M, Wycisk R J, Ren X M, et al. Crosslinked poly(phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells[J], J Mater Chem A, 2016 4 (1): 132-141. [7] Zhu L, Pan J, Wang Y, et al. Multication side chain anion exchange membranes[J], Macromolecules, 2016, 49 (3): 815-824. [8] Zhang X L, Shi Q, Chen P, et al. Block poly(arylene ether sulfone) copolymers tethering aromatic side-chain quaternary ammonium as anion exchange membranes[J]. Polym Chem, 2018, 9 (6): 699-711. [9] Wang C, Mo B M, He Z F, et al. Crosslinked norbornene copolymer anion exchange membrane for fuel cells[J]. J Membr Sci, 2018, 556: 118-125. [10] Miao Y M, Jia Y X, Guo R Q, et al. Heterogeneous anion-exchange membrane: influences of charged binders with crosslinking structure on electrodialytic performance[J]. J Membr Sci, 2018, 557: 67-75. [11] Shin D W, Guiver M D, Lee Y M, et al. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chem Rev, 2017, 117 (6): 4759-4805. [12] Liu L, Chu X M, Liao J Y, Huang Y D, et al. Tuning the properties of poly(2,6-dimethyl-1,4phenylene oxide) anion exchange membranes and their performance in H2/O2 fuel cells[J], Energ Environ Sci, 2018, 11 (2): 435-446. [13] Chen N J, Long C, Li Y X, et al. High-performance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane with porous sandwich structure for anion exchange membrane fuel cell applications[J]. J Membr Sci, 2018, 552: 51-60. [14] Zhu Y A, He Y B, Ge X L, et al. A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: role of its structure in alkaline stability[J]. J Mater Chem A, 2018, 6 (2): 527-534. [15] Zeng L, Zhao T S, Wei L, et al. Zeng and Z.H. Zhang, Highly stable pyridinium functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries[J]. J Power Sources, 2016, 331: 452-461. [16] Yang Q, Lin C X, Liu F H, et al. Poly (2, 6-dimethyl-1, 4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells[J]. J Membr Sci, 2018, 552: 367-376. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号