氟化改性ZIF-8-90杂化膜的制备及其渗透汽化脱醇研究
作者:于汾,朱腾阳,王艳
单位: 华中科技大学,化学与化工学院,武汉 430070
关键词: Pebax 2533;氟化改性;ZIF-8-90;杂化膜;渗透汽化脱醇
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2020,40(1):23-30

摘要:
 有机-无机杂化膜是目前膜分离研究的热点,但是有机基体-无机粒子之间的界面缺陷是目前面临的重要问题。本文使用五氟苯胺改性ZIF-8-90粒子(F-ZIF-8-90),为了改善有机基体-ZIF-8-90之间的界面缺陷和提高ZIF-8-90的疏水性,红外谱图证实了五氟苯胺的成功接枝。以F-ZIF-8-90为填充料,制备了一系列Pebax 2533/F-ZIF-8-90杂化膜,考察了杂化膜的形貌结构、疏水性能和渗透汽化性能。研究结果表明,F-ZIF-8-90填充量为5 wt%时,70 ℃测试条件下杂化膜对质量分数5 wt%乙醇水溶液的渗透通量最高可达201.5 g/m2 h,对应的分离因子为5.4. 相比较纯Pebax 2355膜,渗透通量和分离因子分别提高了24.1 %和151.9 %,打破了渗透通量和分离因子相互制约的效应。
 Polymer-inorganic particle hybrid membranes are currently the hotspot of membrane separation research, but the interface defect between polymeric matrix and inorganic particle are a challenging issue. In this work, ZIF-8-90 particles were modified with pentafluoroaniline to eliminate the interface defects between polymeric matrix and ZIF-8-90 and improve the hydrophobicity of ZIF-8-90 simultaneously. FTIR characterization confirmed the successful grafting of pentafluoroaniline onto ZIF-8-90. A series of Pebax 2533/F-ZIF-8-90 hybrid membranes were prepared by introducing F-ZIF-8-90 into Pebax 2533 matrix. The morphology, hydrophobicity, and pervaporation performance of the hybrid membranes were investigated. The results showed that when the filling amount of F-ZIF-8-90 was 5 wt%, the permeation flux and the separation factor of the hybrid membrane can reach 201.5 g/m2 h and 5.4 respectively, at 70 °C with 5 wt% ethanol aqueous solution. Compared to pure Pebax 2355 membrane, the permeation flux and separation factor of P/FZ-5 hybrid membrane increased by 24.1 % and 151.9 %, respectively, breaking the trade-off effect between the permeation flux and the separation factor.

基金项目:
国家自然科学基金项目(21878117)

作者简介:
共同一作简介:于汾 (1993-),女,河南周口人,硕士,主要从事疏水膜制备与改性工作;朱腾阳 (1991-),男,山东聊城人,博士,主要从事渗透汽化脱醇膜的研究。*通讯作者,E-mail: wangyan@hust.edu.cn

参考文献:
[1] Yin H,Lau C Y,Rozowski M,et al. Free-standing ZIF-71/PDMS nanocomposite membranes for the recovery of ethanol and 1-butanol from water through pervaporation [J]. J Membr Sci, 2017,529:286-292.
[2] Liu G,Xiangli F,Wei W,et al. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach [J]. Chem Eng J,2011,174:495-503.
[3] Ong Y K,Shi G M,Le N L,et al. Recent membrane development for pervaporation processes [J]. Prog Polym Sci,2016,57:1-31.
[4] Jiang L Y,Wang Y,Chung T-S,et al. Polyimides membranes for pervaporation and biofuels separation [J]. Prog Polym Sci,2009,34:1135-1160.
[5] Li Q,Liu Q,Zhao J,et al. High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity [J]. J Membr Sci,2017,544:68-78.
[6] Fan H,Shi Q,Yan H,et al. Simultaneous spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation [J]. Angew Chem Int Ed,2014,53:5578-5582.
[7] Yan H,Li J,Fan H,et al. Sonication-enhanced in situ assembly of organic/inorganic hybrid membranes: Evolution of nanoparticle distribution and pervaporation performance [J]. J Membr Sci,2015,481:94-105.
[8] Xu S,Zhang H,Yu F,et al. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90 [J]. Sep Purif Technol,2018,206:80-89.
[9] Li S,Chen Z,Yang Y,et al. Improving the pervaporation performance of PDMS membranes for n-butanol by incorporating silane-modified ZIF-8 particles [J]. Sep Purif Technol,2019,215:163-172.
[10] Ardestani M A,Babaluo A A,Peyravi M,et al. Fabrication of PEBA/ceramic nanocomposite membranes in gas sweetening [J]. Desalination,2010,250:1140-1143.
 
[11] Wang Y,Gruender M,Chung T S. Pervaporation dehydration of ethylene glycol through polybenzimidazole (PBI)-based membranes. 1. Membrane fabrication [J]. J Membr Sci,2010,363:149-159. 
[12] 董艳娇,张 浩,赵城彬,等. 响应面试验优化超声系统中玉米醇溶蛋白-葡聚糖糖基化及其性质分析 [J]. 食品科学,2018,39:247-253.
[13] Mao H,Zhen H G,Ahmad A,et al. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation [J]. J Membr Sci,2019,573:344-358.
[14] Mao H,. Zhen H G,Ahmad A,et al. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation [J]. J Membr Sci,2019,582:307-321.
[15] Liu S,Liu G,Zhao X,et al. Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation [J]. J Membr Sci,2013,446:181-188.
[16] Zhu T,Yang X,Zheng Y,et al. Preparation of poly(ether-block-amide)/poly(amide-co-poly(propylene glycol)) random copolymer blend membranes for CO2/N2 separation [J]. Polym Eng Sci,2019,59:E14-E23.
[17] Zhu T,Yang X,Zhang Y,et al. Random and block copolymer membranes based on flexible etheric-aliphatic soft segments designed for CO2/CH4 separation [J]. J Nat Gas Sci Eng,2018,54:92-101.
[18] 仲华,谢浩然,马晓华,等. UIO-66-NH2渗透汽化复合膜制备及乙醇脱水[J]. 膜科学与技术,2019,39:79-86.
[19] Liu S,Liu G,Shen J,et al. Fabrication of MOFs/PEBA mixed matrix membranes and their application in bio-butanol production [J]. Sep Purif Technol,2014,133:40-47.
[20] Liu Q,Li Y,Li Q,et al. Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures [J]. Sep Purif Technol,2019,214:2-10.
[21] Liu F F,Liu L,Feng X S. Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation [J]. Sep Purif Technol,2005,42:273-282.
[22] Ngoc Lieu L,Wang Y,Chung T-S. Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation [J]. J Membr Sci,2011,379:174-183.
[23] Gu J,Shi X,Bai Y,et al. Silicalite-filled polyether-block-amides membranes for recovering ethanol from aqueous solution by pervaporation [J]. Chem Eng Technol,2009,32:155-160.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号