聚酰胺复合膜表面高渗透性抗污染涂层的构建
作者:王炎锋,吕振华,姜鹏,俞三传
单位: 1.杭州天创环境科技股份有限公司,杭州311121;2.浙江理工大学理学院,杭州 310018
关键词: 聚酰胺复合膜;抗污染性能;高渗透性;聚乙烯醇;羟丙基甲基纤维素
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2020,40(1):31-36

摘要:
 通过物理涂覆-交联方式,在聚酰胺复合膜表面构建聚乙烯醇(PVA)涂层,研究添加剂羟丙基甲基纤维素(HPMC)对涂层渗透性能及抗污染性能的影响,制备兼具优抗污染性能及高渗透性能的聚酰胺复合膜。分离性能研究表明:含纯PVA涂层的聚酰胺复合膜纯水通量为46.4 Ll/m2 h,而含PVA/HPMC涂层的聚酰胺复合膜纯水通量为54.3 l/m2 h,纯水通量提升17 %。这主要是因为PVA相对较为规整且含有大量的羟基,易因氢键形成结晶区,不利于水分子的渗透;而HPMC的加入,PVA分子链之间的规整度被破坏,降低涂层结晶度,更加利于水分子的渗透。抗污染实验表明:PVA与PVA/HPMC涂层均能明显提升聚酰胺复合膜抗污染性能,而添加HPMC既能保持PVA涂层优良的抗污染性能,又能提高PVA涂层的渗透性。
 In this study, poly(vinyl alcohol) (PVA) anti-fouling surface coating layer was constructed onto polyamide nanofiltration membrane via the process of surface coating followed by crosslinking, and the effects of additive hydroxypropyl methylcellulose (HPMC) on the permeability and antifouling property of PVA coating layer were studied. Separation performance evaluation revealed that the pure water flux of polyamide membrane with PVA coating layer was only 46.4 l/m2 h, while with PVA/HPMC coating layer was 54.3 l/m2 h, showing an increase of 17%. This is mainly due to the reduction of the degrees of tacticity and crystalline of PVA coating layer by introducing HPMC. Anti-fouling experiments revealed that both the PVA and PVA/HPMC coating layers could endow the membrane with improved antifouling property and the blending of HPMC had no effect on antifouling property. The results show that adding HPMC could improve the permeability of PVA coating layer while maintaining its excellent anti-fouling performance.

基金项目:
国家自然科学基金项目(21676256)

作者简介:
第一作者简介:王炎锋(1976.01),男,浙江上虞人,工程师,从事反渗透和纳滤膜材料的制备及应用研究,E-mail:wangyanfeng1976@163.com 通讯作者,E-mail:yuschn@163.com

参考文献:
 [1] M Y Lim, Y S Choi, J Kim, et al. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine [J]. J Membr Sci, 2017, 521: 1-9.
[2] A Anand, B Unnikrishnan, J Y Mao, et al. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review [J]. Desalination, 2018, 429: 119-133.
[3] J Farahbakhsh, M Delnavaz, V Vatanpour, Simulation and characterization of novel reverse osmosis membrane prepared by blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using artificial neural networks [J]. J Membr Sci, 2019, 581: 123-138.
[4] J Y Chong, R Wang, From micro to nano: Polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration [J]. J Membr Sci, 2019, 587: 117161.
[5] M E Ali, L Y Wang, X Y Wang, et al. Thin film composite membranes embedded with graphene oxide for water desalination [J]. Desalination, 2016, 386: 67-76.
[6] C Y Ba, D A Ladner, J Economy, Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane [J]. J Membr Sci, 2010, 347: 250-259.
[7] Y Xia, X J Dai, J G Gai, Preparation of high-performance reverse osmosis membrane by zwitterionic polymer coating in a facile one-step way [J]. J Appl Polym Sci, 2019, 136, 48355-48366.
[8] C Y Tang, Y N Kwon, J O Leckie, Probing the nano- and micro-scales of reverse osmosis membranes-A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements [J]. J Membr Sci, 2007, 287: 146-156.
[9] J H Wu, Z Wang, Y Wang, et al. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property [J]. J Membr Sci, 2015, 495: 1-13.
[10] Q F Zhang, C C Zhang, J L Xu, et al. Effect of poly(vinyl alcohol) coating process conditions on the properties and performance of polyamide reverse osmosis membranes [J]. Desalination, 2016, 379: 42-52.
[11] M L Yang, J S Shi, Y Z Xia, Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films [J]. Int J Biol Macromol, 2018, 107: 2686-2694.
[12] C Liu, Y W Liu, Y Q Guo, et al. High-hydrophilic and salt rejecting PA-g/co-PVP RO membrane via bionic sand-fixing grass for pharmaceutical wastewater treatment [J]. Chem Eng J, 2019, 357: 269-279.
[13] L M Guo, Y Z Yang, Y Wang, Single-step coating of polyethylenimine on gradient nanoporous phenolics for tight membranes with ultrahigh permeance [J]. J Membr Sci, 2019, 587:117172.
[14] J L Zhang, L B Yang, Z Wang, et al. A highly permeable loose nanofiltration membrane prepared via layer assembled in-situ mineralization [J]. J Membr Sci, 2019, 587: 117159.
[15] B B Yuan, P F Li, P Wang, et al. Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties [J]. Sep Puri Technol, 2019, 224: 443-455.
[16] B B Yuan, C Jiang, P F Li, et al. Ultrathin polyamide membrane with decreased porosity designed for outstanding water-softening performance and superior antifouling properties [J]. ACS Appl Mater Interfaces, 2018, 10: 43057-47067.
[17] M K Riekes, G Kuminek, G S Rauber, et al. HPMC as a potential enhancer of nimodipine biopharmaceutical properties via ball-milled solid dispersions [J]. Carbohyd Polym, 2014, 99: 474-482.
[18] C Y Tang, Y N Kwon, J O Leckie, et al. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers [J]. Desalination, 2009, 242: 168-182.
[19] J C Ding, S S Yang, J F Pan, et al. A novel nanofiltration membrane inspired by an asymmetric porous membrane for selective fractionation of monovalent anions in electrodialysis [J]. RSC Adv, 2018, 8: 30502-30511.
[20] N Eghbalifam, M Frounchi, S Dadbin, Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation [J]. Int J boil Macromol, 2015, 80: 170-176.
[21] S Li, H Huang, Y Zeng, et al. Facile surface modification by aldehydes to enhance chlorine resistance of polyamide thin film composite membranes [J]. J Membr Sci, 2016, 518: 40-49.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号