埃洛石纳米管掺杂海藻酸复合膜制备及其渗透蒸发脱水研究 |
作者:张芷铭,邢瑞思,吴洪,潘福生,姜忠义 |
单位: 天津大学化工学院,天津 300072 |
关键词: 渗透蒸发;乙醇脱水;杂化膜;复合膜;埃洛石纳米管 |
DOI号: |
分类号: Q028.8 |
出版年,卷(期):页码: 2020,40(1):45-52 |
摘要: |
采用天然硅骨架材料埃洛石纳米管(HNT)为填充剂,引入海藻酸钠(SA)高分子基质中,旋涂于聚丙烯腈(PAN)基膜制得SA-HNT/PAN膜,考察了膜的渗透蒸发乙醇脱水性能。通过扫描电子显微镜、红外光谱、热失重分析等研究了HNT填充量对膜形貌,化学结构及热稳定性的影响,考察了不同HNT填充量、渗透蒸发操作温度及原料液组成对分离性能的影响。结果表明,在SA基质中加入具有亲水性管状HNT填充剂可同时提升膜的选择性与渗透性。当HNT的填充量为4 wt%时,所制得的SA-HNT/PAN膜的性能最优,渗透通量和分离因子分别达到1722 g/(m2·h)和1415。 |
Natural Si-skeleton halloysite nanotubes (HNT) were doped in sodium alginate (SA) to fabricate SA-HNT/polyacrylonitrile (PAN) composite membranes by spin-coating. The permeate flux and separation factor of SA-HNT/PAN composite membranes for alcohol/water separations were tested. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG) were applied to characterize the morphology, structure and thermal stability of the hybrid membranes. The effects of HNT addition on polymer matrix structure, the optimum separation performance, and the effect of operating conditions on membrane separation performance were investigated. HNTs disturbed the packing of SA chains and increased the content of freezable water, decreasing the crystallinity degree of SA matrix and optimizing the diffusion selectivity of water molecules. Permeate flux and separation factor of SA-HNT/PAN composite membranes were promoted by introducing HNT. The optimum separation performance with a permeate flux of 1722 g/(m2·h) and a separation factor of 1415 was achieved when the content of HNT was 4 wt%. |
基金项目: |
项目来源“多级非对称结构膜制备及传质过程强化”(21878215) |
作者简介: |
第一作者简介:张芷铭(1996-),女,辽宁省鞍山市人,硕士研究生,研究方向为膜与膜过程,E-mail:zzm960512@tju.edu.cn 通讯作者,吴洪,E-mail:wuhong@tju.edu.cn |
参考文献: |
[1] Ong Y K, Shi G M, Le N L, et al. Recent membrane development for pervaporation processes[J]. Prog Polym Sci, 2016, 57: 1-31. [2] 姜忠义, 李多, 彭福兵. 渗透蒸发传质理论与模型(Ⅰ) 穿膜传质模型[J]. 膜科学与技术, 2003, 23 (2): 37-41,47. [3] Cheng X X, Pan F S, Wang M R, et al. Hybrid membranes for pervaporation separations[J]. J Membr Sci, 2017, 541: 329-346. [4] Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356 (6343). [5] 姜忠义, 李多, 贾琦鹏. 填充型渗透蒸发膜的研究进展[J]. 膜科学与技术, 2002, (03): 43-47. [6] Chung T S, Jiang L Y, Li Y, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Prog Polym Sci, 2007, 32 (4): 483-507. [7] Aroon M A, Ismail A F, Matsuura T, et al. Performance studies of mixed matrix membranes for gas separation: A review[J]. Sep Purif Technol, 2010, 75 (3): 229-242. [8] Liu M X, Jia Z X, Jia D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Prog Polym Sci, 2014, 39 (8): 1498-1525. [9] Liu Y C, Tu W W, Chen M Y, et al. A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation[J]. Chem Eng J, 2018, 336: 263-277. [10] Luo P, Zhao Y F, Zhang B, et al. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes[J]. Water Res, 2010, 44 (5): 1489-1497. [11] Sadjadi S, Atai M. Ternary hybrid system of halloysite nanotubes, polyacrylamides and cyclodextrin: an efficient support for immobilization of Pd nanoparticles for catalyzing coupling reaction[J]. Appl Clay Sci, 2018, 153: 78-89. [12] Huang R Y M, Pal R, Moon G Y. Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol-water and isopropanol-water mixtures[J]. J Membr Sci, 1999, 160 (1): 101-113. [13] Kumar A, Lee Y, Kim D, et al. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds[J]. Int J Biol Macromol, 2017, 95: 962-973. [14] Ji C H, Xue S M, Xu Z L. Novel Swelling-Resistant Sodium Alginate Membrane Branching Modified by Glycogen for Highly Aqueous Ethanol Solution Pervaporation[J]. ACS Appl Mater Inter, 2016, 8 (40): 27243-27253. [15] Wang M R, Xing R S, Wu H, et al. Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration[J]. J Membr Sci, 2017, 538: 86-95. [16] Hu S Y, Zhang Y F, Lawless D, et al. Composite membranes comprising of polyvinylamine-poly(vinyl alcohol) incorporated with carbon nanotubes for dehydration of ethylene glycol by pervaporation[J]. J Membr Sci, 2012, 417: 34-44. [17] Zhao J, Pan F S, Li P, et al. Fabrication of Ultrathin Membrane via Layer-by-Layer Self-assembly Driven by Hydrophobic Interaction Towards High Separation Performance[J]. ACS Appl Mater Inter, 2013, 5 (24): 13275-13283. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号