多功能GO/g-C3N4/Ag复合膜的制备及性能研究
作者:赵蕾,朱孟府,郝丽梅,刘红斌,邓橙
单位: 军事科学院系统工程研究院卫勤保障技术研究所,天津 300161
关键词: 氧化石墨烯;石墨相氮化碳;纳米银;复合膜;SERS
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2020,40(1):64-71

摘要:
 采用真空辅助抽滤的方法制备了自支撑的氧化石墨烯复合膜,对其形态和结构进行表征,并以R6G溶液为目标污染物,考察了复合膜的水通量、R6G截留率、SERS检测性能及光催化降解性能。结果表明,g-C3N4和Ag纳米颗粒成功嵌入GO片层之间,制备出GO/g-C3N4/Ag复合膜,膜厚度约为4.2 μm,水通量为230.64 Lm-2h-1MPa-1,R6G截留率达到91.27%;复合膜通过SERS技术能实现对R6G的快速、高灵敏度检测,检测浓度可低至10 nM;复合膜光催化降解性能良好,可见光下反应2h后R6G降解率可达97.05%。GO/g-C3N4/Ag复合膜具有吸附分离、SERS检测及光催化降解等多种功能,改善了GO膜的渗透通量低、不可重复利用等问题,可用于水中有机污染物的检测及降解。 
 In this paper, a freestanding graphene oxide composite membrane (GO/g-C3N4/Ag membrane) was fabricated by facile vaccum filtration. Characterizations on its morphology and structure were then carried out. The water flux, rejection rate, SERS detection activity and photogradation performance of GO/g-C3N4/Ag membrane were respectively evaluated by treating R6G solutions. The GO/g-C3N4/Ag membrane has a thickness of about 4.2 μm. With intercalation of g-C3N4 and AgNPs into GO nanosheets, the GO/g-C3N4/Ag membrane exhibits high water flux of 230.64 Lm-2h-1MPa-1 and rejection rate of 91.27%. SERS detection was conducted after filtering R6G solution through the GO/g-C3N4/Ag membrane, and it was detectable with the concentration of as low as 10 nM. The GO/g-C3N4/Ag membrane also exhibits high photocatalytic activity with degradation rate of 97.05% after irradiation of 2 h. This multifunctional GO composite membrane overcome the deficiency of low permeation flux and non-recyclability of pure GO membrane, indicating a great potential in treating organic pollutants.

基金项目:
国家自然科学基金(51878659),军队医学科技青年培育计划拔尖项目(19QNP111)

作者简介:
第一作者简介:赵蕾(1994-),女,博士研究生,研究方向为分离膜材料制备及性能研究;电子邮件:zleicomeon@163.com *通讯作者, E-mail:zmf323@163.com

参考文献:
 [1]  Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades [J]. Nature, 2008, 452: 301-310.
[2]  Liu G P, Jin W Q, Xu N P, et al. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44: 5016-5030.
[3]  Sun P Z, Wang K L, Zhu H W, et al. Recent developments in graphene-based membranes: structure, mass‐transport mechanism and potential applications [J]. Advanced Materials, 2016, 28: 2287-2310.
[4]  Zhang J G, Xu Z W, Mai W, et al. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials [J]. Journal of Materials Chemistry A, 2013, 1: 3101-3111.
[5]  Xu Z W, Zhang J G, Shan M J, et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes [J]. Journal of Membrane Science, 2014, 458: 1-13.
[6]  Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration [J]. Journal of Membrane Science, 2015, 477: 93-100.
[7]  Wei N, Peng X S, Xu Z P, et al. Understanding water permeation in graphene oxide membranes [J]. ACS Applied Materials & Interfaces, 2014, 6: 5877-5883.
[8]  Huang H, Song Z G, Wei N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes [J]. Nature Communications, 2013, 4: 2979-2988.
[9]  Sun P Z, Zhu M, Wang K L, et al. Selective ion penetration of graphene oxide membranes [J]. ACS Nano, 2012, 7(1): 428-437.
[10]  Akbari A, Sheath P, Martin S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide [J]. Nature Communications, 20167: 10891-10903.
[11]  Geim A K. Graphene: status and prospects [J]. Science, 2009, 324(5934): 1530-1534.
[12]  Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388.
[13]  Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak–tight graphene-based membranes [J]. Science, 2012, 335(6067): 442-444.
[14]  Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes [J]. Science, 2014, 343(6172): 752-754.
[15]  Liu H Y, Wang H T, Zhang X W. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification [J]. Advanced Materials, 2015, 27(2): 249-254.
[16]  Hegab H M, Zou L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification [J]. Journal of Membrane Science, 2015, 484: 95-106.
[17]  Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes [J]. Environmental Science & Technology, 2013, 47(8):3715–3723.
[18]  Yang Y H, Bolling L, Priolo M A, et al. Super gas barrier and selectivity of graphene oxide–polymer multilayer thin films [J]. Advanced Materials, 2013, 25(4):503–508.
[19]  S. Schlücker. Surface-enhanced raman spectroscopy: concepts and chemical applications [J]. Angewandte Chemie International Edition, 2014, 53(19), 4756-4795.
[20]  Fan M, Andrade G F, Brolo A G, et al. A review on the fabrication of substrates for surface-enhanced Raman spectroscopy and their applications in analytical chemistry [J]. Analytica Chimica Acta, 2011, 693(1-2):7-25.
[21]  Xu W, Mao N, Zhang J. Graphene: a platform for surface-enhanced raman spectroscopy [J]. Small, 2013, 9(8): 1206-1224.
[22]  Fan W, Lee Y H, Pedireddy S, et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing [J]. Nanoscale, 2014, 6(9): 4843-4851.
[23]  She X, Wu J, Zhong J, et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency [J]. Nano Energy, 2016, 27: 138-146.
[24]  Liao G Z, Chen S, Quan X, et al. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation [J]. Journal of Materials Chemistry, 2012, 22(6): 2721-2726.
[25]  Zhang L S, Fan W, Liu T X. Flexible hierarchical membranes of WS2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage [J]. Nanoscale, 2016, 8, 16387-16394.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号