HPW@MIL-101掺杂的混合基质膜制备及其离子分离性能研究
作者:王鑫,陆俊其,葛亮,徐铜文
单位: 中国科学技术大学 化学与材料科学学院,合肥 230026
关键词: 金属有机骨架(MOFs);磷钨酸;混合基质膜;电渗析;离子分离
DOI号:
分类号: O69
出版年,卷(期):页码: 2020,40(1):100-109

摘要:
 金属有机骨架因其大的孔隙率,高比表面积以及可调节的孔径等特点广泛地用于分离应用研究。杂多酸具有较大的分子半径,较强的亲水性以及强酸性,是一种良好的质子转移与储存材料。本文通过简单的一锅法将磷钨酸(HPW)引入到MIL-101空腔中,合成出不同含量HPW填充型HPW@MIL-101并通过与磺化聚苯醚/聚乙烯醇(SPVA)共混制备出混合基质膜。考察了HPW@MIL-101在SPVA中的稳定性和分散性并系统地探究了不同HPW含量的HPW@ MIL-101对H+传输及H+/Fe2+分离性能的影响。结果表明,HPW@MIL-101/SPVA混合基质膜显示出优异的H+/Fe2+分离性能,并且随着HPW含量的增加,H+通量和离子分离性能都逐渐上升。其中HWS-3混合基质膜的 H+通量达到1.2710-6 mol/(cm2·s),H+/Fe2+选择性分离性能也高达210。
 Metal-organic frameworks are widely used for separation applications due to its large porosity, high specific surface area and tunable pore size. Heteropoly acid is a kind of ideal material for proton transfer and storage because of its large molecular radius, strong hydrophilicity and super acidity. In this context, we report a facile one-pot solvothermal synthesis strategy to fabricate a series new nanocomposites by filling different content of phosphotungstic acid (HPW) in the cavity of MIL-101 (HPW@MIL-101). We further immobilized HPW@ MIL-101 nanocomposites in SPPO/PVA composite membranes to fabricate the mixed matrix membranes. The stability and dispersion of HPW@MIL-101 in SPVA were investigated. In addition, the effects of HPW@MIL-101 with different content of HPW on H+ transport and H+/Fe2+ separation properties were systematically discussed. Specifically, with the increase of HPW content, the ion permeation fluxes of H+ and H+/Fe2+ permselectivity obviously increased. The resulting representative HWS-3 membrane offers excellent H+ permeation (1.27 10-6 mol/(cm2·s) )and impressive H+/Fe2+ selectivity (>210). 

基金项目:
国家自然科学基金项目(21490581,91534203,21878282)

作者简介:
第一作者简介:王鑫(1995-),陕西西安人,硕士生,从事MOFs分离膜制备及离子分离性能研究,E-mail:wx246@mail.ustc,.edu.cn *通讯作者,E-mail:geliang@ustc.edu.cn; twxu@ustc.edu.cn

参考文献:
 [1] 李海宇,宋卫峰. 膜处理技术在废酸回收中的应用[J]. 膜科学与技术, 2016, 36(3): 136-141.
[2] Oren Y, Korngold E, Daltrophe N, et al. Pilot studies on high recovery BWRO-EDR for near zero liquid discharge approach[J]. Desalination, 2010, 261(3): 321-330.
[3] Strathmann H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288.
[4] Hou L, Wu B, Yu D, et al. Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation[J]. J Membr Sci, 2018, 557: 49-57.
[5] Luo T, Abdu S, Wessling M. Selectivity of ion exchange membranes: A review[J]. J Membr Sci, 2018, 555: 429-454.
[6] Khan N A, Hasan Z, Jhung S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J]. J Hazard Mater, 2013, 244-245: 444-456.
[7] Alhamami M, Doan H, Cheng C H. A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption[J]. Materials (Basel), 2014, 7(4): 3198-3250.
[8] Rangnekar N, Mittal N, Elyassi B, et al. Zeolite membranes-a review and comparison with MOFs[J]. Chem Soc Rev, 2015, 44(20): 7128-7154.
[9] Zhang H C, Hou J, Hu Y X, et al . Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Sci Adv, 2018, 4 (2): eaaq0066.
[10] Finsy V, Ma L, Alaerts L, et al. Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework[J]. Micropor Mesopor Mat, 2009, 120(3): 221-227.
[11] He Y, Tang Y P, Ma D, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal[J]. J Membr Sci, 2017, 541: 262-270.
[12] Ma X H, Yang Z, Yao Z K, et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes[J]. J Membr Sci, 2017, 525: 269-276.
[13] Liu Y, Lin S, Liu Y, et al. Super-stable, highly efficient, and recyclable fibrous metal-organic framework membranes for precious metal recovery from strong acidic solutions[J]. Small, 2019, 15(10):1805242.
[14] Denny M S, Jr, Cohen S M. In situ modification of metal-organic frameworks in mixed-matrix membranes[J]. Angew Chem Int Ed, 2015, 54(31): 9029-9032.
[15] Khdhayyer M R, Esposito E, Fuoco A, et al. mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1[J]. Sep Purif Technol, 2017, 173: 304-313.
[16] Guo Y, Ying Y L, Mao Y Y, et al. Polystyrene mulfonate mhreaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angew Chem Int Ed, 2016, 55: 15120-15124
[17] Wang P, Du X, Chen T, et al. A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions[J]. Electrochim Acta, 2019, 306: 35-44.
[18] Zhang B, Cao Y, Li Z, et al. Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications[J]. Electrochim Acta, 2017, 240: 186-194.
[19] Anima B. Bose, Susmitha Gopu , Wei L. Enhancement of proton exchange membrane fuel cells performance at elevated temperatures and lower humidities by incorporating immobilized phosphotungstic acid in electrodes[J]. J Power Sources, 2014, 263: 217-222.
[20] Lu S, Xu X, Zhang J, et al. A self-anchored phosphotungstic acid hybrid proton exchange membrane achieved via one-step synthesis[J]. Adv Energy Mater, 2014, 4(17): 1400842. 
[21] Betiha M A, Hassan H M A, El-Sharkawy E A, et al. A new approach to polymer-supported phosphotungstic acid: Application for glycerol acetylation using robust sustainable acidic heterogeneous-homogenous catalyst[J]. Appl Catal B-Environ, 2016, 182: 15-25.
[22] Mohanapriya S, Bhat S D, Sahu A K, et al. A new mixed-matrix membrane for DMFCs[J]. Energy Environ Sci, 2009, 2(11): 1210–1216.
[23] Ji W, Afsar N U, Wu B, et al. In-situ crosslinked SPPO/PVA composite membranes for alkali recovery via diffusion dialysis[J]. J Membr Sci, 2019, 590: 117267.
[24] Li Z, He G, Zhao Y, et al. Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks[J]. J Power Sources, 2014, 262: 372-379.
[25] G. Fe´Rey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble´, I. Margiolaki. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309 (5743): 2040-2042. 
[26] Hu X, Lu Y, Dai F, et al. Host-guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via “bottle around ship”: An effective catalyst for oxidative desulfurization[J]. Micropor Mesopor Mat, 2013, 170: 36-44.
[27] Li Z, He G, Zhang B, et al. Enhanced proton conductivity of nafion hybrid membrane under different humidities by incorporating metal-organic frameworks with high phytic acid loading[J]. ACS Appl Mater Inter, 2014, 6(12): 9799-9807.
[28] Dai C, Zhang A, Li J, et al. Synthesis of yolk-shell HPW@Hollow silicalite-1 for esterification reaction[J]. Chem Commun (Camb), 2014, 50(37): 4846-4848.
[29] Küsgens P, Rose M, Senkovska I, et al. Characterization of metal-organic frameworks by water adsorption[J]. Micropor Mesopor Mat, 2009, 120(3): 325-330.
[30] Demessence A, Horcajada P, Serre C, et al. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr)[J]. Chem Commun, 2009, (46): 7149–7151.
[31] Yun S-H, Woo J-J, Seo S-J, et al. Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells[J]. J Membr Sci, 2011, 367(1-2): 296-305.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号