糖基掺杂聚酰胺纳滤膜制备及其性能研究
作者:沈倩,徐孙杰,许振良
单位: 化学工程联合国家重点实验室,华东理工大学化学工程研究所膜科学与工程研发中心,上海 200237
关键词: 糖基物质;纳滤膜;界面聚合;聚酰胺
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2020,40(1):117-122

摘要:
 以哌嗪和糖基物质(葡萄糖、蔗糖和棉子糖)的混合溶液为水相,均苯三甲酰氯的正己烷溶液为油相,采用界面聚合法制备了糖基掺杂的聚酰胺复合纳滤膜。其中,选择了蔗糖掺杂的纳滤膜,讨论了蔗糖和哌嗪的不同比例对纳滤膜的渗透性和分离性能的影响,并对其膜的微观结构、表面润湿性、表面电荷特征进行了详细的测试与表征。蔗糖的掺杂改变了膜的表观结构,降低了膜的粗糙度和聚酰胺皮层厚度,提高了膜的表面亲水性;随着蔗糖比例的增加,纳滤膜的渗透性能也随之增加;当蔗糖浓度达到0.8 wt%时,膜对Na2SO4的截留率仍保持在99.1%,而纯水通量则达到9.7 LMH?bar-1,较原始TFC膜上涨了86%。
 Herein, three carbohydrate doped thin film composite nanofiltration membranes were successfully fabricated via interfacial polymerization method used a mixed solution of PIP/glucose or PIP/sucrose or PIP/raffinose as the aqueous phase and trimesoyl chloride as the organic phase. Among them, the sucrose-doped nanofiltration membrane (PS) performed the best properties. Moreover, the effects of different ratios of sucrose and PIP on the membrane permeability and separation performance were observed. The micro-structure, surface wettability and surface charge characteristics of the PS membrane were characterized. The results showed the apparent structure of PS was changed, and the roughness and the thickness of the PA layer were both reduced, while the surface hydrophilicity was improved by adding sucrose in the membrane. In addition, the outstanding permeability of PS was observed with the increasing ratio of sucrose. And when the sucrose concentration reached 0.8 wt%, the rejection of Na2SO4 remained at 99.1%, while the pure water flux reached 9.7 LMH?bar-1, which was 86% higher than the original TFC membrane.

基金项目:
国家科技部支撑计划项目(2014BAB07B01和2015BAB09B01)

作者简介:
第一作者简介:沈倩(1991-),女,浙江丽水,博士研究生在读,主要从事纳滤膜制备及其水处理研究工作,Email: 445655147@qq.com

参考文献:
[1] Esfahani M. R, Aktij S. A, Dabaghian Z., et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications [J]. Sep. Purif. Technol., 2019, 213: 465-499.
[2] 刘梦欣, 肖 凡, 陈英波, 胡 可, 等. 改性氧化石墨烯接枝聚酰胺纳滤膜[J]. 膜科学与技术, 2019, 39 (1): 72-80 .
[3] Gu K. F, Wang S. H, Li Y. H, Zhao X. T, et al. A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability [J]. J. Memb. Sci., 2019, 581: 214-223.
[4] 王 元, 王 磊, 王旭东, 呼佳瑞., 等. 复合催化剂对聚酰胺纳滤膜结构和性能的影响[J]. 膜科学与技术, 2015, 35 (3): 1-6.
[5] Shen K, Cheng C, Zhang T. H, Wang X. F. High performance polyamide composite nanofiltration membranes via reverse interfacial polymerization with the synergistic interaction of gelatin interlayer and trimesoyl chloride [J]. J. Memb. Sci., 2019, 588: 117192-117203.
[6] Zhang H. Z, Xu Z. L, Ding H, Tang Y. J. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+, Desalination, 2017, 420: 158-166.
[7] Zhao W, Liu H, Meng N, Jian M, et al. Graphene oxide incorporated thin film nanocomposite membrane at low concentration monomers [J]. J. Membr. Sci., 2018, 565: 380-389.
[8] Xu S. J, Shen Q, Chen G. E, Xu Z. L. Novel β-CD@ZIF-8 Nanoparticles-Doped Poly (m-phenyleneisophthalamide) (PMIA) Thin Film Nanocomposite (TFN) Membrane for Organic Solvent Nanofiltration (OSN) [J]. ACS Omega, 2018, 3: 11770-11787.
[9] Wang C, Li Z, Chen J, Li Z, et al. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination [J]. J. Membr. Sci., 2017, 523: 273-281.
[10] Tang Y. J, Shen B. J, Huang B. Q, et al. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin [J]. Sep. Purif. Technol., 2019, 227: 115718-115726.
[11] Xue J. Q, Wang S, Han X. L, et al. Chitosan-Functionalized Graphene Oxide for Enhanced Permeability and Antifouling of Ultrafiltration Membranes [J]. Chem. Eng. Technol., 2018, 41: 270-277.
[12] Xue J, Jiao Z. W, Bi R, et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin [J]. J. Memb. Sci., 2019, 584: 282-289.
[13] Tang Y. J, Wang L. J, Xu Z. L, Zhang H. Z. Novel chitosan-piperazine composite nanofiltration membranes for the desalination of brackish water and seawater [J]. J. Polym. Res., 2018, 25: 118-130.
[14] 李俊俊, 陈 涛, 刘 逸, 程 新, 等. 哌嗪量对聚酰胺复合纳滤膜性能的影响[J]. 膜科学与技术, 2018, 38 (6): 1-6.
[15] Li Y. X, Cao Y, Wang M, Xu Z. L, et al. Novel high-flux polyamide/TiO2 composite nanofiltration membranes on ceramic hollow fibre substrates [J]. J. Memb. Sci., 2018, 565: 322-330.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号