共价层层自组装纳滤膜的制备及性能研究
作者:张金苗,贾瑞,李树轩,苏保卫
单位: 中国海洋大学 化学化工学院/海洋化学理论与工程技术教育部重点实验室,青岛 266100
关键词: 纳滤膜;层层自组装;共价交联
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2020,40(1):139-147

摘要:
 纳滤膜目前多采用界面聚合的方法制备。层层自组装是近年来发展的一种新型制膜方法,但层层自组装所制备的纳滤膜大多需要5个以上双层,制备过程繁琐,同时,以静电力结合的阴阳离子聚电解质在水中存在一定程度的解离和溶胀,结构不稳定。本文提出用静电组装与化学交联相结合的方法制备纳滤膜,增强膜的稳定性。以改性的聚丙烯腈(PAN)为基膜,以聚丙烯酸(PAA)和聚乙烯亚胺(PEI)分别为阴阳离子聚电解质,以戊二醛(GA)为交联剂,制备了共价层层自组装纳滤膜(PEI/PAA/GA)n,研究了双层数、交联剂浓度、交联时间等因素对膜性能的影响。结果表明,当制备两个双层时,(PEI/PAA/GA)2纳滤膜对2000mg/L Na2SO4溶液中的Na2SO4的截留率就能达到98.1%,水通量为12.6 L m−2 h−1 MPa−1;对2000mg/L NaCl溶液中的NaCl的截留率达到82.9%,水通量为16.8 L m−2 h−1 MPa−1。交联后的纳滤膜有良好的耐溶胀性和长期运行稳定性。
 Nanofiltration (NF) membranes are currently prepared by interfacial polymerization. Layer-by-layer (LBL) self-assembly is a new type of method developed in recent years. However, most of the NF membranes prepared by LBL self-assembly require more than 5 double layers. The preparation process is cumbersome. Meanwhile, as the anionic and cationic polyelectrolytes combined by electrostatic force, they would dissociate to a certain degree and swell in the water, and thus the self-assembled membrane is unstable. In this work, a combination of electrostatic assembly and chemical crosslinking is adopted to prepare NF membrane with enhanced stability. Using modified polyacrylonitrile (PAN) membrane as substrate, polyacrylic acid (PAA) and polyethyleneimine (PEI) as the anion-cation polyelectrolyte, and glutaraldehyde (GA) as the cross-linking agent, a kind of covalent LBL self-assembled NF membrane (PEI/PAA/GA)n was prepared. The effects of fabrication factors such as number of double layer, concentration of crosslinker and crosslinking time on the separation performance of the prepared LBL membranes were investigated. The results show that the only two bilayers’ LBL membrane, (PEI/PAA/GA)2, can achieve a rejection of 98.1% for divalent ions and a flux of 12.6 L m−2 h−1 MPa−1.The crosslinked LBL NF membrane has good swelling resistance and long-term running stability.

基金项目:
国家自然科学基金项目(No. 20976170)

作者简介:
第一作者简介:张金苗(1994-),女,山东青岛人,硕士研究生,研究方向:膜分离技术,E-mail: zhangjinmiao123@126.com; 贾瑞(1989-),女,河南商丘人,硕士研究生,为共同第一作者。*通讯作者,E-mail: subaowei@ouc.edu.cn

参考文献:
 [1] Werber J.R., Osuji C.O., Elimelech M. Materials for next-generation desalination and water purification membranes [J]. Nature Reviews Materials, 2016, 1: 16018.
[2] Mulder M. The Use of Membrane Processes in Environmental Problems. An Introduction [M]CRESPO J G, BöDDEKER K W. Membrane Processes in Separation and Purification. Dordrecht; Springer Netherlands. 1994: 229-262.
[3] Okamoto Y., Lienhard J.H. How RO membrane permeability and other performance factors affect process cost and energy use: A review [J]. Desalination, 2019, 470: 
[4] Wang Z., Guo S., Zhang B., et al. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination [J]. Journal of Membrane Science, 2019, 592: 117375.
[5] Li Q., Liao Z., Fang X., et al. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation [J]. Journal of Membrane Science, 2019, 584: 324-332.
[6] Zarei F., Moattari R.M., Rajabzadeh S., et al. Preparation of thin film composite nano-filtration membranes for brackish water softening based on the reaction between functionalized UF membranes and polyethyleneimine [J]. Journal of Membrane Science, 2019, 588: 117207.
[7] Decher G., Hong J.D. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: II. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles and Polyelectrolytes on Charged Surfaces [J]. 1991, 95(11): 1430-1434.
[8] Zhang J., Yang L., Wang Z., et al. A highly permeable loose nanofiltration membrane prepared via layer assembled in-situ mineralization [J]. Journal of Membrane Science, 2019, 587: 117159.
[9] Xu G.-R., Wang S.-H., Zhao H.-L., et al. Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes [J]. Journal of Membrane Science, 2015, 493: 428-443.
[10] Kolasinska M., Krastev R., Gutberlet T., et al. Layer-by-Layer Deposition of Polyelectrolytes. Dipping versus Spraying [J]. Langmuir, 2009, 25(2): 1224-1232.
[11] Zhang G., Gu W., Ji S., et al. Preparation of polyelectrolyte multilayer membranes by dynamic layer-by-layer process for pervaporation separation of alcohol/water mixtures [J]. Journal of Membrane Science, 2006, 280(1-2): 727-733.
[12] Liu Y., Chen G.Q., Yang X., et al. Preparation of Layer-by-Layer Nanofiltration Membranes by Dynamic Deposition and Crosslinking [J]. Membranes (Basel), 2019, 9(2): 
[13] Qiu C., Qi S., Tang C.Y. Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes [J]. Journal of Membrane Science, 2011, 381(1): 74-80.
[14] Liu C., Shi L., Wang R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO 4 2− in feed water [J]. Journal of Membrane Science, 2015, 486: 169-176.
[15] Cho K.L., Hill A.J., Caruso F., et al. Chlorine Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer Membranes for Desalination [J]. 2015, 27(17): 2791-2796.
[16] Li C., Li S., Tian L., et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN) [J]. Journal of Membrane Science, 2019, 572: 520-531.
[17] Xu S., Li F., Su B., et al. Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination [J]. Desalination, 2019, 451: 219-230.
[18] Lv Y., Yang H.-C., Liang H.-Q., et al. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking [J]. Journal of Membrane Science, 2015, 476: 50-58.
[19] Ghoul M., Bacquet M., Morcellet M. Uptake of heavy metals from synthetic aqueous solutions using modified PEI—silica gels [J]. Water research, 2003, 37(4): 729-734.
[20] Han Y., Jiang Y., Gao C. High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes [J]. ACS applied materials & interfaces, 2015, 7(15): 8147-8155.
[21] Huang L., Chen J., Gao T., et al. Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration [J]. 2016, 28(39): 8669-8674.
[22] Li Y., Li C., Li S., et al. Graphene oxide (GO)-interlayered thin-film nanocomposite (TFN) membranes with high solvent resistance for organic solvent nanofiltration (OSN) [J]. Journal of Materials Chemistry A, 2019, 7(21): 13315-13330.
[23] Zhe Tan S.C., Xinsheng Peng, Lin Zhang, Congjie Gao. Polyamide membranes with nanoscale Turing structures for water purification [J]. Science, 2018, 360: 518-521.
[24] Zhao S., Wang Z. A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination [J]. Journal of Membrane Science, 2017, 524: 214-224.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号