腐殖酸-牛血清蛋白混合污染物的超滤膜污染行为 |
作者:冯敏,王磊,杨子晗,苗瑞,吕永涛 |
单位: 西安建筑科技大学环境与市政工程学院,陕西省环境工程重点实验室,陕西省膜分离重点实验室,西安 710055 |
关键词: 超滤膜;混合污染物;膜污染机理;微观作用力 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2020,40(3):22-27 |
摘要: |
本研究选用PVDF超滤膜,分别过滤牛血清蛋白(BSA)、腐殖酸(HA)单种污染物溶液及HA-BSA二元混合污染物溶液,结合相应污染物在膜面吸附行为及膜污染微观作用力,解析HA-BSA混合污染物的超滤膜污染行为。结果发现,相比于BSA,HA-BSA混合物引起的膜污染速率及不可逆污染明显减缓;相反,与HA相比,HA-BSA混合物加剧了膜污染速率及不可逆污染。这主要是由膜污染微观作用力差异引起:HA―PVDF < HA-BSA混合污染物―PVDF < BSA―PVDF,且混合污染物间作用力也明显大于HA―HA但小于BSA―BSA间作用力强度,这导致混合污染物在膜面的吸附累积速率及污染层密实度间于HA和BSA污染物之间,最终导致HA-BSA混合污染物引起的膜污染速率及不可逆污染大于HA污染膜,而小于BSA污染膜。 |
In this study, PVDF ultrafiltration membranes were used to filter the single pollutant solution of bovine serum albumin (BSA), humic acid (HA) and HA-BSA binary mixed pollutant solution, combined with the corresponding pollutant adsorption behavior on the membrane surface and the membrane. Contamination micro-force, analysis of ultrafiltration membrane pollution behavior of HA-BSA mixed pollutants. The results show that compared with BSA, the membrane fouling rate and irreversible pollution caused by the HA-BSA mixture are significantly slowed down; on the contrary, compared with HA, the HA-BSA mixture intensifies the membrane fouling rate and irreversible pollution. This is mainly caused by the difference in micro-effects of membrane pollution: HA-PVDF |
基金项目: |
陕西省科技创新引导专项(2018HJCG-18) ;陕西省重点科技创新团队计划(2017KCT-19-01) |
作者简介: |
第一作者简介:冯 敏(1995- ),女,陕西西安人,硕士研究生,主要从事超滤膜制备与污染机制研究,E-mail:757770624@qq.com *通讯作者,E-mail: wl0178@126.com |
参考文献: |
[1]Qu F S, Liang H, Wang Z, et al. Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms [J]. Water research, 2012, 46(5): 1490-1500. [2]黄 健, 舒增年, 张四海. 亲水荷电超滤膜的制备及对腐殖酸的分离性能 [J]. 中国环境科学, 2014, 34 (11): 2831-2837. [3]Dhakal N, Salinas-Rodriguez S G, Ouda A, et al. Fouling of ultrafiltration membranes by organic matter generated by marine algal species [J]. Journal of Membrane Science, 2018, 555: 418-428. [4]Goh P S, Lau W J, Othman M H D, et al. Membrane fouling in desalination and its mitigation strategies [J]. Desalination, 2018, 425: 130-155. [5]Liu Y, Mi B. Combined fouling of forward osmosis membranes: Synergistic foulant interaction and direct observation of fouling layer formation [J]. Journal of Membrane Science, 2012, 407: 136-144. [6]Peiris R H, Jaklewicz M, Budman H, et al. Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems [J]. Water Research, 2013, 47 (10): 3364-3374. [7]Shi X, Field R, Hankins N. Review of fouling by mixed feeds in membrane filtration applied to water purification [J]. Desalination and Water Treatment, 2011, 35(1-3): 68-81. [8]Jermann D, Pronk W, Meylan S, et al. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production [J]. Water Research, 2007, 41(8): 1713-1722. [9]Ye Y, Clech P L, Chen V, et al. Fouling mechanisms of alginate solutions as model extracellular polymeric substances [J]. Desalination, 2005, 175(1): 7-20. [10]Gu Y, Wang Y, Wei J, et al. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules [J]. Water Research, 2013, 47(5): 1867-1874. [11]Mahlangu T O, Thwala J M, Mamba B B, et al. Factors governing combined fouling by organic and colloidal foulants in cross-flow nanofiltration [J]. Journal of Membrane Science, 2015, 491: 53-62. [12]Zularisam A W, Ahmad A, Sakinah M, et al. Role of natural organic matter (NOM), colloidal particles, and solution chemistry on ultrafiltration performance [J]. Separation & Purification Technology, 2011, 78(2): 189-200. [13]Guan Y, Qian C, Chen W, et al. Interaction between humic acid and protein in membrane fouling process: A spectroscopic insight [J]. Water Research, 2018, 145: 146-152. [14]Wang L, Miao R, Wang X, et al. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: characterization from microforces [J]. Environmental Science & Technology, 2013, 47(8): 3708-3714. [15]Yamamura H, Kimura K, Okajima T, et al. Affinity of functional groups for membrane surfaces: implications for physically irreversible fouling [J]. Environmental Science and Technology, 2008, 42(14): 5310-5315. [16]Miao R, Wang L, Lv Y, et al. Identifying polyvinylidene fluoride ultrafiltration membrane fouling behavior of different effluent organic matter fractions using colloidal probes [J]. Water Research, 2014, 55: 313-322. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号