“化学沉淀-超滤”组合工艺处理焦磷酸盐镀铜废水的研究
作者:冉子寒,张宇峰,顾瑞之,常高峰,刘恩华,张文娟,王雨菲,张宏伟
单位: 1. 天津城建大学环境与市政工程学院,水质科学与技术天津市重点实验室,天津 300384;2. 分离膜与膜过程国家重点实验室,天津工业大学,天津 300387;3. 天津市环境保护技术开发中心,天津 300191
关键词: 焦磷酸盐镀铜废水;管式超滤膜;化学沉淀;电镀废水
DOI号:
分类号: X703.1
出版年,卷(期):页码: 2020,40(2):6-13

摘要:
采用“化学沉淀-管式超滤”组合工艺对焦磷酸盐镀铜废水中的铜和总磷进行处理。,探究了氢氧化钙投加量、搅拌时间和搅拌速度对铜和总磷去除效果,以及运行压力、膜面流速对膜通量的影响、,考察了超滤膜污染状况及其影响因素。研究表明:氢氧化钙投加量1.25 g·L-1,搅拌时间24 min,搅拌速度150 r·min-1,运行压力0.15 MPa、膜面流速2.5 m?s-1时,膜的稳定通量在700 L?m-2?h-1左右,出水中铜含量稳定在为0.2~0.3 mg?L-1,总磷含量稳定在0.2 ~0.4 mg?L-1,均符合《污水综合排放标准》(DB12/356-2008)对铜和总磷的要求。组合工艺中的超滤膜污染主要来源于管式膜内壁的滤饼层,经过酸洗后可以基本较好地恢复稳定通量。
This study investigated the performance of copper total phosphorus removal from pyrophosphate copper electroplating wastewater by chemical precipitation-ultrafiltration processes. The effects of calcium hydroxide dosage, stirring time and stirring speed on the removal of copper and total phosphorus, as well as the effects of operation pressure and membrane velocity on membrane flux were investigated. The mechanism of membrane fouling was also discussed. The results show that: additive amount of calcium hydroxide 1.25 g·L-1, stirring time is 24 min, mixing speed is 150 r·min-1, operating pressure is 0.15 MPa, the membrane surface velocity of 2.5 m·s-1, the stability of the membrane flux in 700 L·m-2·h-1, the content of copper in water stability in 0.2~0.3 mg·L-1, and total phosphorus content stability in 0.2~0.4 mg·L-1, are lower than the "integrated wastewater discharge standard" (DB12/356-2008) on copper and phosphorus requirements. In the process of electroplating wastewater treatment, the membrane pollution mainly comes from the filter cake layer in the inner wall of tube membrane. After acid pickling, the flux can be basically restored.

基金项目:
国家科技重大专项课题(2017ZX07107-001-003);天津市教委科研计划项目(2018KJ161);天津市科技重大专项与工程计划(17ZXSTSF00040)

作者简介:
第一作者简介:冉子寒(1995—),男,河北保定人,硕士研究生,研究方向:水处理新工艺与技术,E-mail:749940333@qq.com 通讯作者,E-mail:zyf9182@tcu.edu.cn

参考文献:
[1] 徐美娟,鲍波,陈春燕,等. 宁波市地表水重金属污染现状和健康风险评价[J]. 环境科学, 2018,39(2): 729-737.
[2] Yi Y,Tang C,Yi T, et al. Health Risk Assessment of Heavy Metals in Fish and Accumulation Patterns in Food Web in the Upper Yangtze River, China[J]. Ecotoxicol Environ Saf, 2017, 145: 295-302.
[3] Fenglian F,Qi W. Removal of Heavy Metal Ions From Wastewaters: a Review[J]. Journal of Environmental Management, 2011, 92: 407-418.
[4] 江似球,徐廉. 漂白粉处理焦磷酸钾镀铜废水[J]. 电镀与环保, 1991(3): 16, 23-24.
[5] 郭燕妮,方增坤,胡杰华,等. 化学沉淀法处理含重金属废水的研究进展[J]. 工业水处理, 2011,31(12): 9-13.
[6] 何绪文,胡建龙,李静文,等. 硫化物沉淀法处理含铅废水[J]. 环境工程学报, 2013,7(4): 1394-1398.
[7] Zhao M,Duncan J,Van hille R. Removal and Recovery of Zinc From Solution and Electroplating Effluent Using Azolla Filiculoides[J]. Water Research, 1999, 33: 1516-1522.
[8] Huang Y,Wu H,Shao T, et al. Enhanced Copper Adsorption By Dtpa-chitosan/alginate Composite Beads: Mechanism and Application in Simulated Electroplating Wastewater[J]. Chemical Engineering Journal, 2018, 339: 322-333.
[9] Liu S,Sun Y,Wang R, et al. Modification of Sand with Iron and Copper Derived From Electroplating Wastewater for Efficient Adsorption of Phosphorus From Aqueous Solutions: a Combinatorial Approach for an Effective Waste Minimization[J]. Journal of Cleaner Production, 2018, 200: 471-477.
[10] Wen Q,Wang Q,Li X, et al. Enhanced Organics and Cu2+ Removal in Electroplating Wastewater By Bioaugmentation[J]. Chemosphere, 2018, 212: 476-485.
[11] Yu X,Jiang J. Phosphate Microbial Mineralization Removes Nickel Ions From Electroplating Wastewater[J]. Journal of Environmental Management, 2019, 245: 447-453.
[12] 李爽,邱春生,孙力平,等. 铝板电絮凝法去除重金属离子Cd2+和Ni2+ [J]. 环境工程学报, 2016(6): 93-99.
[13] Zewail T,Yousef N. Chromium Ions (Cr6+ & Cr3+) Removal From Synthetic Wastewater By Electrocoagulation Using Vertical Expanded Fe Anode[J]. Journal of Electroanalytical Chemistry, 2014, 735: 123-128.
[14] 白心平,郝文超,许振良. 电镀废水的纳滤膜处理工艺及案例[J]. 膜科学与技术, 2010,30(5): 67-70.
[15] Hosseini SS,Nazif A,Alaei shahmirzadi MA, et al. Fabrication, Tuning and Optimization of Poly (acrilonitryle) Nanofiltration Membranes for Effective Nickel and Chromium Removal From Electroplating Wastewater[J]. Separation and Purification Technology, 2017, 187: 46-59.
[16] 秦彦祥,周元祥,陈川,等. 氯化铜法与氯化钙法处理焦磷酸盐镀铜废水的对比研究[J]. 水处理技术, 2015,41(9): 65-67.
[17] R.e.wing,W.g.rayford,W.m.doane,等. 焦磷酸铜电镀淋洗废水处理[J]. 电镀与环保, 1981(1): 78-83.
[18] 文凤余,岳峰,杨书玲. 焦磷酸盐镀铜废水处理方法的研究[J]. 环境保护科学, 1998(6): 18-19.
[19] 石泰山. 用含铬电镀污泥处理焦磷酸盐镀铜废水[J]. 电镀与涂饰, 2016,35(20): 1087-1090.
[20] 秦彦祥. 焦磷酸盐镀铜废水处理技术研究 [D]: 合肥工业大学, 2015.
[21] 刘研萍,李文龙,朱佳,等. 加载絮凝-超滤-反渗透组合工艺处理PCB电镀废水[J]. 化工环保, 2019,39(1): 1-7.
[22] 郭沛. 超滤及其组合工艺在化肥工业废水处理中的应用[J]. 环境与发展, 2018,30(9): 47-48.
[23] 孙茜萍. 絮凝-超滤去除城市污水中有机物的实验研究[J]. 工业水处理, 2019,39(6): 73-76.
[24] 刘壮,朱瓌之,漆虹. 基于絮凝-陶瓷膜耦合技术的甜菊糖苷纯化工艺研究 [J]. 膜科学与技术, 2018,38(1): 95-100.
[25] 季超. 带衬增强型中空纤维膜的制备及其在四环素废水处理中的应用[D]: 中国农业科学院, 2018.
[26] Kim I,Choi D,Lee J, et al. Preparation and Application of Patterned Hollow-fiber Membranes to Membrane Bioreactor for Wastewater Treatment[J]. Journal of Membrane Science, 2015, 490: 190-196.
[27] Nguyen T,Bui X,Luu V, et al. Removal of Antibiotics in Sponge Membrane Bioreactors Treating Hospital Wastewater: Comparison Between Hollow Fiber and Flat Sheet Membrane Systems[J]. Bioresource Technology, 2017, 240: 42-49.
[28] Hou D,Dai G,Wang J, et al. Boron Removal and Desalination From Seawater By Pvdf Flat-sheet Membrane Through Direct Contact Membrane Distillation[J]. Desalination, 2013, 326: 115-124.
[29] Li T,Zhang W,Zhai S, et al. Efficient Removal of Nickel(ii) From High Salinity Wastewater By a Novel Paa/zif-8/pvdf Hybrid Ultrafiltration Membrane[J]. Water Research, 2018, 143: 87-98.
[30] 周龙坤,关晓琳,彭娜,等. 有机管式超滤膜回收造纸黑液中木质素的研究 [J]. 膜科学与技术, 2019,39(1): 90-96.
[31] 付晓宇,李凤娟,李小龙. 管式膜处理高悬浮物高浊度污水的中试研究[J]. 天津科技, 2012,39(5): 61-62.
[32] 刘恩华,王家富,魏飞. 管式超滤+纳滤技术处理分散染料废水中试研究[J]. 水处理技术, 2015,41(2): 96-99.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号