[bmim][Tf2N]@UiO-66-NH2/聚酰亚胺混合基质膜的制备及气体分离性能
作者:刘冰,姚杰,李丹,孙浩
单位: 1. 哈尔滨工业大学环境学院,黑龙江 哈尔滨150090;2. 城市水资源开发利用(北方)国家工程研究中心,黑龙江 哈尔滨 150090
关键词: 混合基质膜;IL@UiO-66-NH2纳米颗粒;气体分离性能
出版年,卷(期):页码: 2020,40(2):14-21

摘要:
为了改善混合基质膜中分散相与连续相间的兼容性,设计一种新型的离子液体负载金属有机骨架(IL@UiO-66-NH2)纳米材料作为填料,通过涂覆法制备聚酰亚胺基(6FDA-ODA)混合基质膜,并研究IL@UiO-66-NH2含量及进料压力对气体分离性能的影响。利用SEM、XRD和FTIR对IL@UiO-66-NH2纳米颗粒和混合基质膜进行表征。结果表明,IL@UiO-66-NH2纳米颗粒均匀分散于聚酰亚胺基质中并且没有出现非选择性孔腔。利用混合基质膜构建CO2/CH4分离系统,当混合基质膜中IL@UiO-66-NH2负载量为15 wt.%时,CO2的渗透性为26.32 Barrer,CO2/CH4的分离因子为53.91,比纯聚酰亚胺膜分别提高了46.55%和26.23%。
In order to improve the interfacial compatibility between the inorganic dispersed phase and the organic continuous phase of the mixed matrix membrane, novel IL@UiO-66-NH2 nanoparticles were designed as fillers to prepare MMMs by coating method. The effect of IL@UiO-66-NH2 content and feed pressure on the gas separation performance of the membrane was investigated. The IL@UiO-66-NH2 particle and mixed matrix membrane were characterized by SEM, XRD and FTIR. The results show that the IL@UiO-66-NH2 nanoparticles were uniformly dispersed in the polyimide matrix and no non-selective voids were formed in the MMMs. The resulting membrane was used to construct the CO2/CH4 separation system. The results show that when the loading of IL@UiO-66-NH2 in the membrane is 15 wt.%, the permeability of CO2 is 26.32 Barrer, and the separation factor of CO2/CH4 is 53.91, which is increased by 46.55% and 26.23% than that of the pure polyimide membrane.
作者简介:刘冰(1990—),女,黑龙江五常人,博士研究生,主要研究方向:环境功能膜材料的制备. 通讯作者:E-mail:yaojiejiehit@163.com

参考文献:
[1] Anagnostou E, John E H, Edgar K M, et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate[J]. Nature, 2016, 533, 380.
[2] Vega F, Camino S, Gallego L M, et al. Experimental study on partial oxy-combustion technology in a bench-scale CO2 capture unit[J]. Chem. Eng. J, 2019, 362, 71-80.
[3] 夏明珠, 严莲荷, 雷武,等. 二氧化碳的分离回收技术与综合利用[J]. 现代化工, 1999, 19(5):46-48.
[4] Giordano L, Gubis J, Bierman G et al. Conceptual design of membrane-based pre-combustion CO2 capture process: Role of permeance and selectivity on performance and costs[J]. J. Membr. Sci, 2019, 575, 229-241.
[5] Robeson L M. The upper bound revisited[J]. J. Membr. Sci, 2008, 320, 390-400.
[6] 侯蒙杰, 张新儒, 王永洪,等. 聚乙烯胺/埃洛石纳米管混合基质膜的制备及其CO2/N2分离[J]. 化工学报, 2018(9):4106-4113.
[7] Xue D X, Wang Q, Bai J. Amide-functionalized metal–organic frameworks: Syntheses, structures and improved gas storage and separation properties[J]. Coord. Chem. Rev, 2019, 378, 2-16.
[8] Nguyen T B, Rodrigue D, Kaliaguine S. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. J. Membr. Sci, 2018, 548, 429-438.
[9] Qian Q H, Wu A X, Chi W S. Sharon, et al. Mixed matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility[J]. ACS Appl. Mater. Interfaces, 2019, 34, 31257-31269.
[10] 邓友全. 离子液体-性质、制备与应用[J]. 绿色化学研究发展中心, 2006.
[11] Li H, Tuo L, Yang K, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid[J]. J. Membr. Sci, 2016, 511, 130-142.
[12] Lin R, Ge L, Diao H, et al. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation[J]. ACS Appl. Mater. Interfaces, 2016, 8, 32041-32049.
[13] Sezginel K B, Keskin S, Uzun A. Tuning the Gas Separation Performance of CuBTC by Ionic Liquid Incorporation[J]. Langmuir, 2016, 32, 1139-1147.
[14] Zeeshan M, Keskin S, Uzun A. Enhancing CO2/CH4 and CO2/N2 separation performances of ZIF-8 by post-synthesis modification with [BMIM][SCN][J]. Polyhedron, 2018, 155, 485-492.
[15] Ban Y, Li Z, Li Y, et al. Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture[J]. Angew. Chem. Int. Ed, 2015, 54, 15483-15487.
[16] 李军, 许少勃, 刘婷婷,等. MIL-101固载化羧基咪唑离子液体在温和条件下催化CO2环加成反应[J]. 天然气化工(C1化学与化工), 2018, 43(04):39-44+72.
[17] 何琴琴, 陈琪, 吕盟盟,等. UiO-66对罗丹明B的吸附性能研究[J]. Chinese Journal of Chemical Engineering, 2014(Z1):1285-1290.
[18] Xu R , Wang Z , Wang M, et al. High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation[J]. J. Membr. Sci, 2019, 573, 455-464.
[19] Friebe S, Mundstock A, Unruh D, et al. NH2-MIL-125 as membrane for carbon dioxide sequestration: Thin supported MOF layers contra Mixed-Matrix-Membranes[J]. J. Membr. Sci, 2016, 516, 185-193.
[20] Nik O G, Chen X Y, Kaliaguine S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2012, 413-414(19):48-61.
[21] Zhu H, Wang L, Jie X, et al. Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al)[J], ACS Appl. Mater. Interfaces, 2016, 8, 22696-22704.
[22] Xian S, Wu Y, Wu J, et al. Enhanced Dynamic CO2 Adsorption Capacity and CO2/CH4 Selectivity on Polyethylenimine-Impregnated UiO-66[J], Ind. Eng. Chem. Res, 2015, 54, 11151-11158.
[23] Cheng Y, Zhai L, Ying Y, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. J. Mater. Chem. A, 2019, 7, 4549-4560.
[24] Ahmad M Z, Peters T A, Konnertz N M, et al. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes[J], Sep. Purif. Technol, 2020, 230, 115858.
[25] Cheng Y D, Ying Y P, Zhai L Z, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation[J], J. Membr. Sci, 2019, 53, 97-106.
[26]廉玉姣. 双无机添加剂协同提高混合基质膜的CO2分离性能研究[D].太原:太原理工大学,2019.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号