Bi-SnO2/GO电催化膜的制备及其性能研究
作者:李雪燕,邓宇,赵蕾,邓橙,郝丽梅,刘红斌, 朱孟府
单位: 1 天津科技大学化工与材料学院,天津 300457;2 军事科学院卫勤保障技术研究所,天津 300161
关键词: 电催化膜、铋掺杂二氧化锡、氧化石墨烯、大肠杆菌
出版年,卷(期):页码: 2020,40(2):53-59

摘要:
采用电化学—水热法,以聚四氟乙烯(PTFE)微孔膜为支撑,制备Bi掺杂SnO2修饰氧化石墨烯(GO)的电催化膜(Bi-SnO2/GO),通过SEM、TEM、EDS、XRD、LSV、EIS、CV等手段对其结构及性能进行表征,并评价其对水中大肠杆菌去除效果。结果表明,当铋锡摩尔比为1:15、电沉积电压为2.0V时,制备的Bi-SnO2/GO电催化膜的析氧电势为1.75V,Bi-SnO2/GO膜表面均匀分布着纳米Bi-SnO2粒子,粒子尺寸约为10.4 nm,Sn 和 Bi元素含量分别为 11.28 wt% 和 3.59 wt%;当外加直流电压为2.5V且连续运行5h时,Bi-SnO2/GO电催化膜对水中大肠杆菌的去除率达到96.82%。表明Bi掺杂SnO2显著提高了GO基电催化膜的电性能及大肠杆菌去除性能。
Bi-SnO2/GO electrocatalytic membrane based on polytetrafluoroethylene (PTFE) microporous membrane was prepared by electrochemical-hydrothermal method. The composition structure and electrochemical performance were characterized by a series of characterization methods such as SEM, TEM, EDS, XRD, LSV, EIS, CV and so on. The removal efficiency of Bi-SnO2/GO membrane was also evaluated by treating E. coli. The results show that when the molar ratio of Bi to Sn is 1:15 and the electrodeposition voltage is 2V, the oxygen evolution potential of the electrocatalytic membrane is 1.75V. Bi-SnO2 nanoparticles were uniformly distributed on the surface of Bi-SnO2/GO electrocatalytic membrane. The particle size is about 10.4 nm, and the contents of Sn and Bi elements are 11.28 wt% and 3.59 wt%, respectively. Under the DC voltage of 2.5 V and the continuous operation time of 5 h, the removal rate of E. coli by Bi-SnO2/GO membrane is 96.82%. This indicates that the Bi-SnO2/GO electrocatalytic membrane has a good application prospect in the removal of microorganisms from water.
第一作者简介:李雪燕(1993-),女,河南驻马店人,硕士生,研究方向为膜分离水处理技术,E-mail:2965783374@qq.com; *通讯作者:E-mail: zmf323@163.com,E-mail: dcnudt@163.com

参考文献:
[1] 王静,冯玉杰. 电催化电极与电化学水处理技术的研究应用进展[J].黑龙江大学自然科学学报,2004,(1):126-131.
[2] Zaky AM, Chaplin BP. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment [J]. Environmental Science & Technology, 2013, 47(12): 6554-6563.
[3] Zhang Q, Vecitis CD. Conductive CNT-PVDF membrane for capacitive organic fouling reduction [J]. Journal of Membrane Science, 2014, 459(6): 143-156.
[4] 李建新, 王虹, 杨阳. 膜技术处理印染废水研究进展[J]. 膜科学与技术, 2011,31(3):145-148.
[5] 刘志猛, 朱孟府, 邓橙, 等. Sb-SnO2/炭膜对水中四环素电催化降解性能研究[J]. 水处理技术, 2016,(12):69-72.
[6] 李娇, 王虹, 李建新, 等. 钛基电催化膜电化学合成制备丙酸及膜反应器优化设计[J]. 膜科学与技术, 2013,33(6):64-70.
[7] 高晓红, 张登松, 施利毅, 等. 碳纳米管/SnO2复合电极的制备及其电催化性能研究[J]. 化学学报, 2007,(7):589-594.
[8] Liu Z, Zhu M, Wang Z, et al. Effective degradation of aqueous tetracycline using a nano-TiO2/carbon electrocatalytic membrane [J]. Materials, 2016, 9(5): 364-368.
[9] Yong Y A, Yang S Y, Choi C, et al. Electrocatalytic activities of Sb-SnO2 and Bi-TiO2 anodes for water treatment: Effects of electrocatalyst composition and electrolyte [J]. Catalysis Today, 2016, 282(6):62-67.
[10] Chad D , Mary H. S, Md S R. Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal andinactivation[J]. Environmental Science & Technology, 2011, 45(9): 3672-3679.
[11] Rahaman MD, Chad D. Vecitis. Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter[J]. Environmental Science & Technology, 2012, 46(12):1556-1564.
[12] Novoselov K S, Geim A K, Morozov S V, et al. Electric field in atomically thin carbon films [J]. Science, 2004,306(5696):666-669.
[13] 刘欣欣, 王小平, 王丽军, 等. 石墨烯的研究进展[J]. 材料导报, 2011,25(23):92-97.
[14] 高振华, 张建伟, 王海滨, 等. 石墨烯的应用研究进展[J]. 化工科技,2012,20(4):64-67.
[15] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nature nanotechnology, 2008,3(2):101-105
[16] 芦瑛, 张林,李明, 等.氧化石墨烯基水处理膜研究进展[J]. 科技导报, 2015,33(14):32-35.
[17] Wang P, Deng Y, Hao L, et al. Continuous efficient removal and inactivation mechanism of E. coli by Bi-SnO2/C electrocatalytic membrane [J]. Environmental Science and Pollution Research. 2019, 26(11): 11399-11409.
[18] 张佳, 夏明芳, 王国祥, 等. DSA 电极电催化氧化降解四环素废水工艺优化[J]. 精细化工, 2014,31(2):234-239.
[19] Liu H, Vajpayee A, Vecitis CD. Bismuth-doped tin oxide-coated carbon nanotube network: Improved anode stability and efficiency for flow-through organic electrooxidation [J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10054-10066.
[20] 张新奇, 朱孟府, 邓橙, 等. PTFE/Bi-SnO2-CNT电催化膜的结构及性能表征[J]. 膜科学与技术, 2019,39(1):34-40.
[21] Liu Z, Zhu M, Zhao L, et al. Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane: effect of nano antimony-doped tin dioxide coating [J]. Chemical Engineering Journal, 2017, 314(40):59-68.
[22] Li H, Liu J, Qian J, et al. Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance [J]. Chinese Journal of Catalysis, 2014, 35(9): 1578-89.
[23] Niranjana E, Swamy BEK, Naik RR, et al. Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode: A cyclic voltammetric study [J]. Journal of Electroanalytical Chemistry, 2009,631(1):1-9.
[24] Zhao H, Gao J, Zhao G, et al. Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency [J]. Applied Catalysis B: Environmental, 2013, 136(22):278-286.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号