聚醚砜基膜热稳定性对复合纳滤膜性能的影响 |
作者:项军,刘天宇,zongli xie,唐娜,程鹏高,华欣欣 |
单位: 1天津科技大学,化工与材料学院,天津 300457;2天津市海洋资源与化学重点实验室(天津科技大学),天津 300457;3 Commonwealth Scientific and Industrial Research Organization (CSIRO),Australia |
关键词: 超滤基膜;薄层复合膜;TiO2纳米粒子;热稳定性 |
出版年,卷(期):页码: 2020,40(2):60-66 |
摘要: |
研究聚醚砜超滤基膜的热稳定性对界面聚合法制备复合纳滤膜性能的影响。加入TiO2纳米粒子可显著改善超滤膜的热稳定性,并随着基膜中TiO2的增加,超滤基膜的热稳定性也随之增加。基膜TiO2含量增至8%时,纳滤膜的水通量从27 L/(m2·h)逐渐增加到38 L/(m2·h), 对NaCl的截留率从48%增加到58%,而对MgSO4的截留率保持不变。研究表明提高微滤基膜的热稳定性有助于提高复合纳滤膜的水通量和截留率。 |
This study investigated the effects of the thermal stability of the supporting ultrafiltraion membrane on the performance of the final thin-film-composite nanofiltration membrane fabricated via interfacial polyemerisation process. In this study, the thermal stability of the ultrafiltration support membrane were greatly improved by incorporating TiO2 nanoparticles. With the increasing of the TiO2 loading in the support membrane, the thermal stability of the ultrafiltration support membrane increases. The water flux of the NF membrane increases gradually from 27 L/(m2·h) for the membrane without TiO2 loading to 38 L/(m2·h) for the membrane with 8% TiO2 loading. The rejection of the NaCl increases from 48% for the membrane without TiO2 loading to 58% for the membrane with 8% TiO2 loading and the rejection of MgSO4 remains the same. These results indicate that the improvement of thermal stability of the support membrane helps enhance both the water flux and salt rejection of the final NF membrane. |
第一作者简介:项军(1980-),男,湖北省荆州市人,博士,讲师,研究方向为膜科学与化工分离技术,E-mail:jxiang@tust.edu.cn |
参考文献: |
[1] C. K. Diawara. Nanofiltration process efficiency in water desalination[J]. Separation and Purification Reviews. 2008, 37: 303-325. [2] Q.-F. An, W.-D. Sun, Q. Zhao. Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers[J]. Journal of Membrane Science. 2013, 431: 171-179. [3] J. Cheng, W.X. Shi, L. H. Zhang, R.J. Zhang. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)[J]. Applied Surface Science. 2017, 416: 152-159. [4] W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim. A recent progress in thin film composite membrane: a review[J]. Desalination. 2012, 287: 190–199. [5] G.-D. Kang, Y.-M. Cao. Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res. 2012, 46:584–600. [6] L. Li, S. Zhang, X. Zhang, G. Zheng. Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine[J]. J. Membr. Sci. 2008, 315: 20–27. [7] G. Chen, S. Li, X. Zhang, S. Zhang. Novel thin-film composite membranes with improved water flux from sulfonated cardo poly(arylene ether sulfone) bearing pendant amino groups[J]. J. Membr. Sci. 2008 310: 102–109. [8] M. Duan, Z.Wang, J. Xu, J.Wang, S. Wang. Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance[J]. Sep. Purif. Technol. 2010, 75: 145–155. [9] H. Zou, Y. Jin, J. Yang, H. Dai, X. Yu, J. Xu. Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach[J]. Sep. Purif. Technol. 2010, 72: 256–262. [10] A.K. Ghosh, B.-H. Jeong, X. Huang, E.M.V. Hoek. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties[J]. J. Membr. Sci. 2008: 311: 34–45. [11] H. Zou, Y. Jin, J. Yang, H. Dai, X. Yu, J. Xu. Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach[J].Sep. Purif. Technol. 2010, 72: 256–262. [12] S. Zhu, S. Zhao, Z. Wang, X. Tian, M. Shi, J. Wang, S. Wang. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone / polyaniline membrane as the substrate[J]. Journal of Membrane Science. 2015, 493: 263-274 [13] X. Fan, Y. Dong, Y. Su, X. Zhao, Y. Li, J. Liu, Z. Jiang. Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process[J]. Journal of Membrane Science. 2014, 452: 90-96. [14] Y. Li, Y. Su, Y. Dong, X. Zhao, Z. Jiang, R. Zhang, J. Zhao. Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers[J]. Desalination. 2014, 333: 59-65. [15] Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane[J]. Journal of Membrane Science. 2007, 288: 231-238. [16] Y. Yang, P. Wang, Q. Zheng. Preparation and Properties of Polysulfone/TiO2 Composite Ultrafiltration Membranes[J]. Journal of Polymer Science: Part B: Polymer Physics. 2006, 44: 879-887. [17] Misdan N, Lau W J, Ismail A F. Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects[J]. Desalination. 2012, 287(1): 228-237. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号