借助硅气凝胶改善和调控聚丙烯腈热交联膜孔结构及性能
作者:王开放,李琳,张勇跃,彭少蒙,王春雷,梁长海,王同华
单位: 1.大连理工大学石油与化学工程学院,盘锦 124221;2.大连理工大学化工学院 精细化工国家重点实验室 炭素材料研究室 炭膜及多孔材料课题组,大连116024
关键词: 聚丙烯腈;硅气凝胶;孔结构;渗透性能
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2020,40(3):81-87

摘要:
以正硅酸乙酯(TEOS)为前驱体,采用溶胶-凝胶法制备硅溶胶并将其引入聚丙烯腈超滤膜孔道中,经过热交联制得具有丰富海绵状孔结构的TPAN/SiO2(TPS)杂化膜,考察了正硅酸乙酯浓度对TPS杂化膜的孔结构和渗透性能的影响。结果表明,TPS杂化膜孔内引入的硅气凝胶限制了膜孔道结构在热交联过程的融并;随着TEOS浓度的增加,TPS杂化膜的平均有效孔径增加,水通量提高,所制备的杂化膜的BSA截留率都在98%以上;同时,杂化膜表现出优异的热稳定性和良好的耐溶剂性。
Silica sol was prepared by sol-gel method using ethyl orthosilicate (TEOS) as the precursor and introduced into the pores of polyacrylonitrile (PAN) ultrafiltration membranes. Then, the cross-linked PAN (TPS) hybrid membrane with a sponge-like pore structure was prepared through thermally cross-linking reaction. The effects of the concentration of TEOS on the pore structure and permeability of the TPS hybrid membrane was investigated. The results show that the silica aerogel which was introduced into the pores of TPS hybrid membrane restricts the collapse of pore structure during the thermal crosslinking process. With the increase of TEOS concentration, the average effective pore size and water flux of the TPS hybrid membrane both increase. The TPS hybrid membranes have the higher rejection rate for BSA above 98%. Additionally, the hybrid membrane exhibits excellent thermal stability and good solvent resistance.

基金项目:
国家重点研发计划项目(2017YFB0603403);国家自然科学基金(21436009、21676044、21576035, 21878033);中央高校基本科研业务费(DUT19ZD211、 DUT 2018TB02)资助

作者简介:
第一作者简介:王开放(1993-),男,河南开封人,硕士生,从事聚合物膜研究。* 通讯作者,E-mail:wangth@dlut.edu.cn

参考文献:
[1] Minelli M, Baschetti M G, et al. Study of gas permeabilities through polystyrene-block-poly(ethylene oxide)copolymers [J]. Journal of Membrane Science, 2013, 432:83-89.
[2] Yang T, Shi G M, et al. Symmetric and asymmetric zeolitic imidazolate frameworks(ZIFs)/polybenzimidazolate(PBI)na- nocomposite membranes for hydrogen purification at high temperatures[J].Advanced Energy Materials, 2012, 2:1358 -1367.
[3] Li S, Wang Z, et al. High-performance membranes with multi-permselectivity for CO2 separation[J]. Advanced Materials, 2012, 24:3196-3200.
[4] Solomon M F J, Bhole Y, et al. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)interfac-
ial polymerization, surface modification and solvent active-
ation[J]. Journal of Membrane Science, 2013, 434:193-203.
[5] Karan S, Samitsu S, et al. Diamond-like carbon nanosheets
Ultrafast viscous permeation of organic solvents through[J]. Science, 2012, 335:444-447.
[6] Darvishmanesh S, Tasselli F, et al. Preparation of solvent stable polyphenylsulfone hollow fiber nanofiltration mem- branes[J]. Journal of Membrane Science, 2011, 384:89-96.
[7] Yao Y, Lin z, et al. Synthesis of nonfluorinated amphiphi- lic road-coil block copolymer and its application to proton exchange membranes[J]. Advanced Energy Materials, 2011, 1:1133-1140.
[8] Kim T A, Jo W H, et al. Superacidic electrospun fiber-nafion hybrid proton exchange membrane[J]. Chemistry of Materials, 2010, 22:3646-3652.
[9] Lee S Y, Ogawa A, et al. Nonhumidified intermediate temperature fuel cells using protic ionic liquids[J]. Journal of the American Chemical Society, 2010, 132:9764-9773.
[10] Gao J, Wang X X, et al. Preparation of heat-treated PAN/SiO2 hybrid hollow fiber membrane contactor for acetylene absorption[J]. Separation and Purification Tech- nology, 2016, 159:116-123.
[10] 梁明兴, 李琳, 王同华, 等. 不同分子量聚丙烯腈共混膜的制备与表征[J]. 膜科学与技术, 2017, 37(4): 20-26.
[11] Peng Y B, Guo F, et al. A novel polyacrylonitrile membrane with a high flux for emulsified oil/water separation [J]. Separation and Purification Technology, 2017, 184:72-78.
[12] Beril Melbiah J S, Nithya D, et al. Surface modification of polyacrylonitrile ultrafiltration membranes using amphiphilic pluronic F127/CaCO3 nanoparticles for oil/water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516:147-160.
[13] Tsai H A, Wang T Y, et al. The preparation of polyamide/polyacrylonitrile thin film composite hollow fiber membranes for dehydration of ethanol mixtures[J]. Separ- ation and Purification Technology, 2017, 187:221-232.
[14] Liang B, Zhan W, et al. High performance grapheme oxide/polyacrylonitrile composite pervaporation membranes for desalination applications[J]. Journal of Materials Chemistry A, 2015, 3:5140-5147.
[15] 丁玲华, 李琳, 王同华, 等. 预氧化对聚丙烯腈膜结构及性能的影响[J]. 膜科学与技术, 2015, 35(2): 1-6.
[16] Jin X, Li L, et al. Effects of thermal cross-linking on the structure and property of asymmetric membrane prepared from the polyacrylonitrile[J]. Polymers. 2018, 10:1-16.
[17] Wang T, Zhao C W, Li P, et al. Effect of non-solvent
additives on the morphology and separation performance of
poly(m-phenylene isophthalamide)(PMIA)hollow fiber
nanofiltration membrane [J]. Desalination, 2015, 365:293-307.
[18] Li W B, Yang Z H, et al. Thermally stable and solvent resistant self-crosslinked TiO2/PAN hybrid hollow fiber membrane fabricated by mutual supporting method[J]. Journal of Membrane Science, 2014, 467:253-261.
[19] Hu Y T, Wei C, et al. Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth[J]. Journal of Membrane Science, 2018, 545:250-258.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号