部分氟化嵌段型阴离子交换膜的制备 |
作者:吴虹月,杨谦, 张秋根,朱爱梅,刘庆林 |
单位: 厦门大学 化学化工学院,福建省厦门市 361000 |
关键词: 部分氟化;嵌段型;阴离子交换膜;燃料电池 |
DOI号: |
分类号: TQ 028.8 |
出版年,卷(期):页码: 2020,40(4):1-8 |
摘要: |
本工作以接枝α,α’-二溴对二甲苯的氟化芳香族链段作为大分子引发剂,在链的末端引发烯烃聚合,合成了三嵌段聚合物。然后在脂肪族链段接枝季铵型侧链进行功能化,制备出部分氟化的嵌段型阴离子交换膜。表征结果显示,由于嵌段间的亲疏水性差异,膜内形成明显的微相分离。其中,膜FPAE-PVBC-QA-20 (IEC=1.51 mmol/g) 在80 °C下离子电导率达到87.8 mS/cm;浸泡于80 °C、2 mol/L NaOH溶液中500 h后仍保留74.5 %的离子电导率,具有良好的耐碱性;单电池功率密度达到了131.7 mW/cm2。 |
The preparation of anion exchange membranes with good alkali stability and high ionic conductivity is the focus of current research. In this work, tri-block polymers were synthesized by using fluorinated aromatic blocks grafted with α, α'-dibromo-p-xylene as macromolecular initiators to initiate the polymerization of olefins at the end of chains. Subsequently, a quaternized side chain was grafted on the aliphatic block for functionalization to prepare partially fluorinated block-type anion exchange membranes. The characterization shows that significant microphase separation structures are formed in the membranes, due to the difference in hydrophilicity and hydrophobicity between the blocks. Among them, the membrane FPAE-PVBC-QA-20 (IEC = 1.51 mmol/g) has an ionic conductivity of 87.8 mS/cm at 80 ° C. Moreover, it retains 74.5% of initial ionic conductivity after being immersed in a 2 M NaOH solution at 80 ° C for 500 h and exhibits good alkali resistance. The power density of single cell reaches 131.7 mW/cm2. |
基金项目: |
国家自然基金面上项目(21878252 & 21736009) |
作者简介: |
第一作者简介:吴虹月(1995-),女,福建省南平市人,在读硕士研究生,主要从事功能膜材料的制备 通讯作者简介:刘庆林,Email:qlliu@xmu.edu.cn |
参考文献: |
[1] 徐铜文,吴永会,罗婧艺,等.PPO /SiO2碱性阴离子交换膜的制备与表征[J].膜科学与技术,2011,31(3):192-196. [2] Zhang X, Cao Y, Zhang M, et al. Enhancement of the mechanical properties of anion exchange membranes with bulky imidazolium by “thiol-ene” crosslinking[J]. J Membr Sci, 2020, 596. [3] Ren R, Zhang S, Miller H A, et al. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups[J]. ACS Appl Energy Mater, 2019, 2(7): 4576-4581. [4] Wang J, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nat Energy, 2019. [5] 王秀琴,林陈晓,朱爱梅,等. 交联型聚芳醚基阴离子交换膜的制备及性能研究[J]. 膜科学与技术,2018,38(2):1-8. [6] Gottesfeld S, Dekel D R, Page M, et al. Anion exchange membrane fuel cells: Current status and remaining challenges[J]. J Power Sources, 2018, 375: 170-184. [7] Mandal M, Huang G, Kohl P A. Highly conductive anion-exchange membranes based on cross-linked poly(norbornene): vinyl addition polymerization[J]. ACS Appl Energy Mater, 2019. [8] Zhang S, Zhu X, Jin C. Development of a high-performance anion exchange membrane using poly(isatin biphenylene) with flexible heterocyclic quaternary ammonium cations for alkaline fuel cells[J]. J Mater Chem A, 2019, 7(12): 6883-6893. [9] Akiyama R, Yokota N, Miyatake K. Chemically stable, highly anion conductive polymers composed of quinquephenylene and pendant ammonium groups[J]. Macromolecules, 2019, 52(5): 2131-2138. [10] Wang J, Gu S, Xiong R, et al. Structure-property relationships in hydroxide-exchange membranes with cation strings and high ion-exchange capacity[J]. ChemSusChem, 2015, 8(24): 4229-4234. [11] Zeng L, Zhao T S. An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains[J]. J Power Sources, 2016, 303: 354-362. [12] Li Y, Zhang J, Yang H, et al. Boosting the performance of an anion exchange membrane by the formation of well-connected ion conducting channels[J]. Polym Chem, 2019. [13] Chu X, Shi Y, Liu L, et al. Piperidinium-functionalized anion exchange membranes and their application in alkaline fuel cells and water electrolysis[J]. J Mater Chem A, 2019, 7(13): 7717-7727. [14] Dong X, Hou S, Mao H, et al. Novel hydrophilic-hydrophobic block copolymer based on cardo poly(arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes[J]. J Membr Sci, 2016, 518: 31-39. [15] Zhang M, Shan C, Liu L, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains[J]. ACS Appl Mater Interfaces, 2016, 8(35): 23321-23330. [16] Wu W, Wei B, Feng J, et al. Synthesis and properties of symmetric side-chain quaternized poly(arylene ether sulfone)s for anion exchange membrane fuel cells[J]. Macromol Chem Phys, 2018, 219(3): 1700416. [17] Li L, Lin C X, Wang X Q, et al. Highly conductive anion exchange membranes with long flexible multication spacer[J]. J Membr Sci, 2018, 553: 209-217. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号