膜孔反洗流剪切力表征膜污染变化规律探究
作者:王建涛,王湛
单位: 北京工业大学 环境与化学工程学院,化学化工系,绿色催化与分离北京市重点实验室,北京100124
关键词: 错流微滤反洗;污染层平均孔径;膜孔内剪切力;可逆污染阻力
DOI号:
分类号: TQ 028.8
出版年,卷(期):页码: 2020,40(4):25-33

摘要:
本研究采用孔径为0.2μm聚偏氟乙烯(PVDF)平板微滤膜对酵母悬浮液进行了错流过滤与反洗。研究了在反洗过程中污染层平均孔径(df)、膜孔内剪切力(τ)和可逆污染阻力(Rr)的变化规律,并对比了有无反洗情况下的df变化。结果表明:df、τ和Rr均随着周期的增加而减小。df随着过滤压力(TMP)、流速、反洗时间和强度的增加而增大,随着浓度的增加而减小。当1700
In this study, cross-flow filtration and backwash of yeast suspension were carried out using a polyvinylidene fluoride (PVDF) plate microfiltration membrane with a pore diameter of 0.2 μm. The variations of the average pore size of fouling layer(df), the shear force in the membrane pores(τp) and the reversible fouling resistance (Rr) during the backwash process were studied. And the df changes with and without backwash were compared. The results showed that the df, τp and Rr decrease with increasing period. The df increases with TMP, flow velocity, backwash duration and backwash strength, and decreases with increasing concentration. When 1700

基金项目:
国家自然科学基金(21476006)

作者简介:
第一作者简介:王建涛(1994-),男,重庆市人,硕士,从事膜清洗与纳滤膜制备研究,E-mail:wang_jiant@163.com. 通讯作者,电话:010-67396186,传真:010-67396186,E-mail:wangzhan3401@163.com.

参考文献:
[1]El Rayess Y, Albasi C, Bacchin P, et al. Cross-flow microfiltration applied to oenology: A review [J]. Journal of Membrane Science, 2011, 382(1): 1-19.
[2]Prihasto N, Liu Q-F, Kim S-H. Pre-treatment strategies for seawater desalination by reverse osmosis system [J]. Desalination, 2009, 249(1): 308-16.
[3]Guo H, Wyart Y, Perot J, et al. Low-pressure membrane integrity tests for drinking water treatment: A review [J]. Water Research, 2010, 44(1): 41-57.
[4]许亚夫, 邹大江, 俊 熊. 滤膜材料及微滤技术的应用 [J]. 中国组织工程研究, 2011, 15(16): 2949-52.
[5]鄢忠森, 瞿芳术, 梁恒. 超滤膜污染以及膜前预处理技术研究进展 [J]. 膜科学与技术, 2014, 4):
[6]Le-Clech P, Chen V, Fane T a G. Fouling in membrane bioreactors used in wastewater treatment [J]. Journal of Membrane Science, 2006, 284(1): 17-53.
[7]Kim D I, Kim J, Shon H K, et al. Pressure retarded osmosis (PRO) for integrating seawater desalination and wastewater reclamation: Energy consumption and fouling [J]. Journal of Membrane Science, 2015, 483(34-41.
[8]Remize P J, Guigui C, Cabassud C. Evaluation of backwash efficiency, definition of remaining fouling and characterisation of its contribution in irreversible fouling: Case of drinking water production by air-assisted ultra-filtration [J]. Journal of Membrane Science, 2010, 355(1-2): 104-11.
[9]姚金苗, 王湛, 梁艳莉. 超、微滤过程中临界通量的研究进展 [J]. 膜科学与技术, 2008, 02): 73-6.
[10]Bouhabila E H, Ben A??M R, Buisson H. Fouling characterisation in membrane bioreactors [J]. Separation and Purification Technology, 2001, 22-23(123-32.
[11]Vera L, González E, Ruigómez I, et al. Analysis of backwashing efficiency in dead-end hollow-fibre ultrafiltration of anaerobic suspensions [J]. Environ Sci Pollut R, 2015, 22(21): 16600-9.
[12]Hwang K-J, Chan C-S, Tung K-L. Effect of backwash on the performance of submerged membrane filtration [J]. Journal of Membrane Science, 2009, 330(1-2): 349-56.
[13]Ye Y, Sim L N, Herulah B, et al. Effects of operating conditions on submerged hollow fibre membrane systems used as pre-treatment for seawater reverse osmosis [J]. Journal of Membrane Science, 2010, 365(1-2): 78-88.
[14]Yang L, Wang Z, Sun Y, et al. Influence of various operating conditions on cleaning efficiency in sequencing batch reactor (SBR) activated sludge process. Part II: Backwash and water rinsing introduced membrane filtration process [J]. Desalination, 2011, 272(1-3): 76-84.
[15]Akhondi E, Zamani F, Law A W K, et al. Influence of backwashing on the pore size of hollow fiber ultrafiltration membranes [J]. Journal of Membrane Science, 2017, 521(33-42.
[16]Krantz W B, Greenberg A R, Kujundzic E, et al. Evapoporometry: A novel technique for determining the pore-size distribution of membranes [J]. Journal of Membrane Science, 2013, 438(153-66.
[17]Hwang K-J, Huang P-S. Cross-flow microfiltration of dilute macromolecular suspension [J]. Separation and Purification Technology, 2009, 68(3): 328-34.
[18]Jiang S, Zhang Y, Zhao F, et al. Impact of transmembrane pressure (TMP) on membrane fouling in microalgae harvesting with a uniform shearing vibration membrane system [J]. Algal Research, 2018, 35(613-23.
[19]Yiantsios S G, Karabelas A J. An experimental study of humid acid and powdered activated carbon deposition on UF membranes and their removal by backwashing [J]. Desalination, 2001, 140(2): 195-209.
[20]Katsoufidou K, Yiantsios S G, Karabelas A J. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery [J]. Desalination, 2008, 220(1): 214-27.
[21]Akhondi E, Wicaksana F, Fane A G. Evaluation of fouling deposition, fouling reversibility and energy consumption of submerged hollow fiber membrane systems with periodic backwash [J]. Journal of Membrane Science, 2014, 452(319-31.
[22]Lu W-M, Ju S-C. Selective Particle Deposition in Crossflow Filtration [J]. Separation Science and Technology, 1989, 24(7-8): 517-40.
[23]Kuberkar V, Czekaj P, Davis R. Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing [J]. Biotechnology and Bioengineering, 1998, 60(1): 77-87.
[24]Ye Y, Chen V, Le-Clech P. Evolution of fouling deposition and removal on hollow fibre membrane during filtration with periodical backwash [J]. Desalination, 2011, 283(198-205.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号