侧链磺化聚醚醚酮质子交换膜的制备及研究
作者:郭宇星,沈春晖,高山俊,张林
单位: 武汉理工大学材料科学与工程学院,武汉 430070
关键词: 磺化聚醚醚酮,质子交换膜,溶胀度,质子电导率
DOI号:
分类号: TM911.48
出版年,卷(期):页码: 2020,40(4):34-40

摘要:
为进一步提高磺化聚醚醚酮质子交换膜的尺寸稳定性、耐氧化性和质子电导率,本论文从侧链结构出发设计制备了一种新的侧链型磺化聚醚醚酮质子交换膜。以磺化聚醚醚酮为聚合物主链,利用N,N′-羰基二咪唑(CDI)的活化作用将1-乙醇胺(MEA)与磺酸基团反应,从而延长侧链长度,再通过1,3-丙磺酸内酯的开环反应引入磺酸功能基团,最后采用溶胶凝胶法制备出一系列新的侧链型磺化聚醚醚酮质子交换膜。对所制备的侧链型磺化聚醚醚酮质子交换膜分别进行了结构和性能表征。结果表明,该类侧链型磺化聚醚醚酮质子交换膜中产生了亲水/疏水相分离结构,并且具有适当的吸水率和较低的溶胀度(9.2%),最大离子交换容量可达1.666mmol/g。该类质子交换膜具有更高的质子电导率,其中60℃时支化程度为80%的侧链型磺化聚醚醚酮质子交换膜的电导率高达0.096 S/cm。此外,制备的侧链型磺化聚醚醚酮质子交换膜也具有良好的机械性能,氧化稳定性和热稳定性。
A series of novel side-chain-type proton exchange membranes (AEMs) composed of sulfonated polyetheretherketone backbone and pendent sulfonic acid groups were prepared via sulfonation, activation , and ring-opening reactions. Using sulfonated polyether ether ketone as the main chain of the polymer, the activation of N, N′-carbonyldiimidazole (CDI) was used to react 1-ethanolamine (MEA) with a sulfonic acid group to extend the side chain length. A ring-opening reaction of 1,3-propane sultone introduced sulfonic acid functional groups, and finally a series of new side chain sulfonated polyetheretherketone proton exchange membranes were prepared by the sol-gel method. The structure and performance of the side chain sulfonated polyetheretherketone proton exchange membranes were characterized respectively. The chemical structure of theas-synthesized copolymers was confirmed by 1H-NMR spectroscopy. The results indicated that the side chain sulfonated polyetheretherketone proton exchange membranes displayed moderate water absorption and low swelling ratio with the values in the range of 8.9% ? 11.3%. These proton exchange membranes also showed good ionic conductivity, in which the SCSPEEK proton membrane with a degree of branching of 80% reached a proton conductivity of 0.096 mS / cm at 80 ° C. The highest ion exchange capacity of the proton membrane has been reached 1.666mmol/g. Moreover, these membranes had good thermal and mechanical property and chemical oxidative stability.

基金项目:
国家自然科学基金(基金号21875176),国家自然科学基金(基金号21276202)

作者简介:
第一作者简介:郭宇星(1995-),男,湖北省武汉市,硕士研究生,研究方向为燃料电池关键材料,E-mail:62739497@qq.com *通讯作者,E-mail:shenchunhui@whut.edu.cn

参考文献:
[1]K. Jiao, M. Ni. Challenges and opportunities in modelling of proton exchange membrane fuel cells (PEMFC)[J]. International Journal of Energy Research, 2017, 41(13).
[2]Yusta J M, Rojas-Zerpa J C. Renewable and sustainable energy reviews[J]. Renewable & Sustainable Energy Reviews, 2016, 38(october 2015):834-847.
[3]Neil V. Rees, Richard G. Compton. Sustainable energy: a review of formic acid electrochemical fuel cells[J]. 2011.
[4]Hu, Y, Li, X, Yan, L, et al. Improving the Overall Characteristics of Proton Exchange Membranes\\r,?via\\r, Nanophase Separation Technologies: A Progress Review[J]. Fuel Cells, 17(1):3-17.
[5]Li W, Shen C, Gao S, et al. Preparation and characterization of phosphonic acid functionalized siloxane/polyimide composite proton exchange membranes[J]. Solid State Ionics, 2016, 287:1-7.
[6]Recent Developments on Alternative Proton Exchange Membranes: Strategies for Systematic Performance Improvement[J]. Energy Technology, 2015, 3(7):675-691.
[7]Chunhui Shen, Gengjin Kong, Jiang Wang, Xin Zhang. Synthesis and characterization of high temperature proton exchange membrane from isocyanatopropyltriethoxysilane and hydroxyethane diphosphonic acid[J]. Hydrogen Energy,2015,40(1).
[8]Reyes-Rodriguez J L, Escorihuela J, García-Bernabé, Abel, et al. Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes[J]. RSC Advances, 2017, 7(84):53481-53491.
[9]孙媛媛,屈树国,李建隆.质子交换膜燃料电池用磺化聚醚醚酮膜的研究进展[J].化工进展,2016,35(09).
[10]张书香,蒋圣俊,李辉,等.磺化聚醚醚酮膜的制备和性能研究进展[J].济南大学学报(自然科学版),2009,23(1):42-46.
[11]张高文,周震涛.磺化聚醚醚酮膜的制备及性能[J].电池,2005(04):49-51.
[12]沈斌,汪称意,徐常,陈文涛,李坚,任强.一类侧链型磺化聚芳醚砜质子交换膜的合成及表征[J].高分子学报,2016(10):1409-1417.
[13]乔宗文,高保娇,陈涛.侧链磺化型聚砜质子交换膜的设计与制备及其性能研究[J].高分子学报,2015(05):571-580.
[14]李丹,郭强,董云凤,等.高磺化度SPEEK基复合质子交换膜吸水和溶胀性能研究[C]// 2010年全国高分子材料科学与工程研讨会学术论文集(上册).2010.
[15]Guo W, Li X, Wang H, et al. Synthesis of branched sulfonated poly (aryl ether ketone) copolymers and their proton exchange membrane properties[J]. Journal of Membrane Science, 2013, 444:259-267.
[16]Park H S, Seo D W, Choi S W, et al. Preparation and characterization of branched and linear sulfonated poly (ether ketone sulfone) proton exchange membranes for fuel cell applications?[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(5):1792-1799.
[17]Zhi Shao and Chengji Zhao, Poly (ether ether ketone) grafted with sulfoalkylamine as proton exchange membrane[J]. High Performance Polymers,2018,1-10
[18]岳杰,刘继元,赵春霞,等.交联结构磺化聚醚醚酮质子交换膜的制备与性能[J].高分子材料科学与工程,2017(11):136-142.
[19]Lei L, Zhu X, Xu J, et al. Highly stable ionic-covalent cross-linked sulfonated poly (ether ether ketone) for direct methanol fuel cells[J]. Journal of Power Sources, 2017, 350:41-48.
[20]许小聪,刘美华,卢彦兵,等.N,N'-羰基二咪唑作为活化剂在高分子合成中的研究进展[J].高分子通报,2007(2).
[21]Elschner T, Matej Bra?i?, Mohan T, et al. Modification of cellulose thin films with lysine moieties: a promising approach to achieve antifouling performance[J]. Cellulose, 2017(3):1-11.
[22]Gode P, Hult A, Jannasch P, et al. A novel sulfonated dendritic polymer as the acidic component in proton conducting membranes[J]. Solid State Ionics, Diffusion & Reactions, 2006, 177(7-8):787-794.
[23]Li X, Lin Q, Cao R. A convenient approach for the synthesis of 1,3,5-trioxanes under solvent-free conditions at room temperature[J]. Monatshefte für Chemie - Chemical Monthly, 2014, 145(6):1017-1022.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号