硅烷偶联剂改性钛酸钡对SPEEK质子交换膜性能的影响 |
作者:董翠翠,王艺洁,孙进,周琼 |
单位: 1.中国石油化工股份有限公司大连石油化工研究院,辽宁大连 116045;2.中国石油大学(北京) 新能源与材料学院,北京 102249 |
关键词: 磺化聚醚醚酮,硅烷偶联剂,钛酸钡 |
DOI号: |
分类号: TM911.48 |
出版年,卷(期):页码: 2020,40(4):55-61 |
摘要: |
为提高无机填料在聚合物中的分散性,本文利用硅烷偶联剂KH570对钛酸钡(BT)表面改性。采用溶液浇铸法制备磺化聚醚醚酮(SPEEK)/改性钛酸钡(KH570-BT)复合质子交换膜。利用透射电镜观察了改性前后BT在SPEEK基体中的分散情况并系统的研究了KH570-BT掺杂量对复合质子交换膜性能的影响。结果显示,与BT相比,KH570-BT的分散性得到明显改善。将KH570-BT掺杂进SPEEK后,复合膜的质子电导率、甲醇渗透率、热稳定性及选择性均出现明显提升。室温下,SPEEK/KH570-BT-1.0复合膜的质子电导率达到63.7 mS/cm,高于同配比的SPEEK/BT-1.0(σ=57.7 mS/cm)和SPEEK(σ=58.6 mS/cm);SPEEK/KH570-BT-1.0的选择性达到20.9×104 S s/cm3,与SPEEK/BT-1.0(17.2×104 S s/cm3)和SPEEK(17.7×104 S s/cm3)相比,分别提升了21.5%和18.1%。 |
Barium titanate (BT) was modified by KH570 to improve its dispersion in polymers. The sulfonated poly(ether ether ketone) (SPEEK)/KH570 modified barium titanate (KH570-BT) composite proton exchange membrane was prepared by solution casting method. The dispersion of BT and KH570-BT in SPEEK was observed by TEM. The influences of KH570-BT on the properties of composite membrane was studied systematically. The results show that the incorporation of KH570-BT can improve the proton conductivity, methanol permeability, thermal stability and selectivity of SPEEK. The proton conductivity of the SPEEK/KH570-BT-1.0 composite membrane reached 63.7 ms/cm, higher than SPEEK/BT-1.0 (σ = 57.7 ms/cm) and SPEEK (σ = 58.6 ms/cm) , the selectivity of SPEEK/KH570-BT-1.0 was 20.9×104 S s/cm3, which was 21.5% and 18.1% higher than SPEEK/BT-1.0 and SPEEK respectively. |
基金项目: |
国家重点研发计划(2016YFC0303700);国家科技重大专项(201505017-002) |
作者简介: |
第一作者简介:董翠翠(1985-),女,辽宁省人,博士,主要从事质子交换膜燃料电池的研究,E-mail:dongcuicui.fshy@sinopec.com 通讯作者,E-mail:zhouqiong_cn@163.com |
参考文献: |
[1] Jimmy L, Koich Y, Takeo Y. Correlating electronic structure and chemical durability of sulfonated poly(arylene ether sulfone)s[J]. Journal Of Power Sources, 2015, 279:48-54. [2] Nayibe GM, Dominic G, Andres GG. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells[J]. Journal Of Power Sources, 2015, 300:229-237. [3] Nguyen, Dang HS, Kim D. Proton exchange membranes based on sulfonated poly(arylene ether ketone) containing triazole group for enhanced proton conductivity[J]. J Membr Sci, 2015, 496:13-20. [4] Zhang B, Ni JP, Xiang XZ. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes[J]. Journal Of Power Sources, 2017, 227:110-117. [5] Yin YH, Wang HY, Cao L. Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells[J]. Electrochimica Acta, 2016, 203:178-188. [6] Salarizadeh P, Javanbakht M. Influence of amine-functionalized iron titanate as filler for improving conductivity and electrochemical properties of SPEEK nanocomposite membranes[J]. Chemical Engineering Journal, 2016, 299:320-331. [7] Ko T, Kim K, Kim SK. Organic/inorganic composite membranes comprising of sulfonated Poly(arylene ether sulfone) and core-shell silica particles having acidic and basic polymer shells[J]. Polymer, 2015, 70:70-81. [8] 王维, 张可, 房冉冉. KH570原位改性纳米SiO2球状颗粒的制备及疏水效果评价[J]. 中国粉体技术, 2019, 25(3):42-47. [9] Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes[J]. J Memb Sci, 2014, 454:220-232. [10] Yin YH, Xu T, H GW. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ solegel process[J]. Journal Of Power Sources, 2015, 276:271-278. [11] Tamura T, Kawakami H. Aligned electrospun nanofiber composite membranes for fuel cell electrolytes[J]. Nano Lett,2010, 10:1324-1328. [12] Jang W, Choi S, Lee S. Characterizations and stability of polyimide-phosphotungstic acid composite electrolyte membranes for fuel cell[J]. Polymer Degradation and Stability, 2007, 92:1289-1296. [13] Jun Y, Zarrin H, Fowler M. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells.International Journal of Hydrogen Energy, 2011, 36:6073-6081. [14] Mossayebi Z, Saririchi T, Rowshanzamir S. Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells[J]. Int J Hydrogen Energy, 2016, 41:12293-306. [15] Zhang HQ, He YK, Zhang JK. Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer[J]. J Memb Sci, 2016, 505:108-118. [16] Zheng J, He Q, Liu C. Nafion-microporous organic polymer networks composite membranes[J]. J Memb Sci, 2015, 476:571-579. [17] Gaur, SS, Dhar P, Sonowa A. Thermo-mechanically stable sustainable polymer based solid electrolyte membranes for direct methanol fuel cell applications[J]. J Memb Sci, 2017, 526:348-354. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号