中空纤维膜促进成核的冷却结晶过程 |
作者:何泽漫,肖武,贺高红,姜晓滨 |
单位: 大连理工大学精细化工国家重点实验室,化工学院,膜科学与技术研究开发中心,辽宁 大连 116024 |
关键词: 冷却结晶;膜结晶器;异相成核;晶种 |
DOI号: |
分类号: TQ028 |
出版年,卷(期):页码: 2020,40(4):80-86 |
摘要: |
冷却结晶是一种广泛应用的分离技术,具有能耗低和环境友好的优点。现阶段,溶液逐步冷却的自发成核则难以高精度控制;人工添加晶种可提高冷却结晶产品质量,但是无法实现自动化。本文利用中空纤维膜组件的高单位体积换热面积和优异的传热能力,实现膜界面骤冷促进成核,并利用膜界面流场的综合作用力,进而完成溶液冷却结晶的自动成核和晶种添加功能。本文以硫脲水溶液作为研究体系,研究PTFE中空纤维膜促进冷却结晶过程。结果表明,利用膜诱导晶核产生的时间为195 s,无膜参与的自发成核冷却结晶诱导时间为280 s。同时,在相同的温度,原料浓度、以及搅拌速度下,由于利用膜促进成核的冷却结晶能够有效调控晶种产生的速率和数量并实现自动输送,因此,制备的晶体产品形貌完整,纯度高(>99.5%),平均粒径大(>1.35 mm,相比于其他无膜技术提高30%以上)且粒径分布集中。膜辅助促进成核的新型冷却结晶方法为冷却结晶工艺的优化设计提供了新的思路。 |
Cooling crystallization is a widely used separation technology, which has the advantages of low energy consumption and environmental friendliness. At present, the spontaneous nucleation of the solution gradually cooling is difficult to control with high precision; artificial seed addition can improve the quality of the cooling crystallization product; however, it cannot be automated. This paper used the high heat exchange area and excellent heat transfer capacity of hollow fiber membrane modules to achieve rapid cooling at the membrane interface to promote nucleation, thereby completing the automatic nucleation and seed addition functions of cooling crystallization. In this study, thiourea aqueous solution was used as the research system to study the cooling crystallization process of PTFE hollow fiber membranes. The results showed that the time to induce nucleation with membrane was 195 s, and the induction time to cooling crystallization of spontaneous nucleation without membrane participation was 280 s. In addition, at the same temperature, raw material concentration, and stirring speed, the use of the membrane to promote the nucleation of the cooling crystallization can effectively regulate the number and rate of seed production and achieve automatic transportation. Therefore, the quality of the prepared crystal product is excellent, the crystal morphology is complete, the purity is high (>99.5 wt%), the average crystal particle size is large (>1.35 mm), and the particle size distribution is narrower. This novel cooling crystallization method provides a new approach for the optimization and design of the cooling crystallization process. |
基金项目: |
国家自然科学基金国家重大科研仪器研制项目(21527812),面上项目(21676043) |
作者简介: |
第一作者简介:何泽漫(1995-),女,河南驻马店人,硕士研究生,从事膜冷却结晶,E-mail:1449891012@qq.com。 *通讯作者,姜晓滨(1984-),男,教授,从事化工分离和膜结晶过程研究,E-mail:xbjiang@dlut.edu.cn。 |
参考文献: |
[1] BARINOVA O, SADOVSKIY A, ERMOCHENKOV I, et al. Solid solution Li2MoO4 - Li2WO4 crystal growth and characterization [J]. J Cryst Growth, 2017, 468:365-8. [2] POLINO M, PORTUGAL C A M, DI PROFIO G, et al. Protein Crystallization by Membrane-Assisted Technology [J]. Cryst Growth Des, 2019, 19(8): 4871-83. [3] MIKAMI T, KAIZU R. Influence of Feed Condition on Crystal Size Distribution of Potassium Alum Obtained by Unseeded Two-Stage Semi-Batch Cooling Crystallization [J]. Journal Of Chemical Engineering Of Japan, 2019, 52(3): 317-24. [4] ZHURAVLEV E, MADHAVI V, LUSTIGER A, et al. Crystallization of Polyethylene at Large Undercooling [J]. ACS Macro Lett, 2016, 5(3): 365-70. [5] JI Y-L, AN Q-F, ZHAO Q, et al. Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance [J]. Journal of Membrane Science, 2012, 390-391:243-53. [6] YIN Q, ZHANG S, ZHOU L, et al. Improving crystallization of ethyl vanillin by adding polyvinylpyrrolidone and ethyl vanillin crude product to mixed solvent, heating, cooling, adding ethyl vanillin crystal seeds, cooling, filtering crystal slurry and drying, CN109534978-A [P/OL]. ://DIIDW:201931040N. [7] GAO X C, GAO B, LIU H, et al. Fabrication of stainless steel hollow fiber supported NaA zeolite membrane by self-assembly of submicron seeds [J]. Sep Purif Technol, 2020, 234:116121. [8] NARDUCCI O, JONES A G. Seeding in Situ the Cooling Crystallization of Adipic Acid using Ultrasound [J]. Crystal Growth & Design, 2012, 12(4): 1727-35. [9] PAULSON J A, MESBAH A, ZHU X, et al. Control of self-assembly in micro- and nano-scale systems [J]. Journal Of Process Control, 2015, 27:38-49. [10] KLEETZ T, BRAAK F, WEHENKEL N, et al. Design of Median Crystal Diameter Using Gassing Crystallization and Different Process Concepts [J]. Cryst Growth Des, 2016, 16(3): 1320-8. [11] LUO L, CHANG J, CHUNG T-S. Cooling Crystallization of Sodium Chloride via Hollow Fiber Devices to Convert Waste Concentrated Brines to Useful Products [J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 10183-92. [12] YIN Q, ZHANG S, ZHOU L, et al. Improving crystallization of ethyl vanillin by adding polyvinylpyrrolidone and ethyl vanillin crude product to mixed solvent, heating, cooling, adding ethyl vanillin crystal seeds, cooling, filtering crystal slurry and drying, CN109534978-A [P/OL]. CN109534978-A 29 Mar 2019 C07C-045/81 201943]. ://DIIDW:201931040N. [13] 耿洪鑫, 徐义明, 李凭力, et al. 能量回收式膜蒸馏组件的设计和性能 [J]. 膜科学与技术, 2014, 34(02): 85-9. [14] 张燕, 陈华艳, 高启君, et al. 基于PVDF疏水膜的界面聚合改性制备换热管 [J]. 膜科学与技术, 2017, 37(03): 14-20. [15] GILBERT P H, SAENGOW C, GIACOMIN A J. Transport Phenomena in Eccentric Cylindrical Coordinates [J]. Aiche Journal, 2017, 63(8): 3563-81. [16] KARTHIK G M, BUWA V V. Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed [J]. Aiche Journal, 2017, 63(1): 366-77. [17] JI J, WANG Y, ZHANG X, et al. Supercooling characteristics of mannitol phase transition system under heterogeneous nucleation [J]. Journal of Materials Science, 2020, 55(7):2994-3004. [18] LV L, ZHANG J, XU J. Microscopic visualization of heterogeneous nucleation process on smooth spherical particle: Method and results [J]. Chemical Engineering Science, 2020, 213:115411. [19] KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A Review of Classical and Nonclassical Nucleation Theories [J]. Cryst Growth Des, 2016, 16(11): 6663-81. [20] JIANG X, LU D, XIAO W, et al. Interface-based crystal particle autoselection via membrane crystallization: From scaling to process control [J]. Aiche Journal, 2019, 65(2): 723-33. [21] 张莉媛, 王刚, 齐美玲, et al. FBRM、PVM在氯化钾结晶介稳区测定中的应用研究 [J]. 盐科学与化工, 2019, 48(11): 29-32. [22] 齐美玲, 王刚, 张莉媛, et al. FBRM、PVM在低钠光卤石制取氯化钾结晶中的应用 [J]. 广东化工, 2019, 46(15): 13-5. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号