溶胶-凝胶法制备TiO2掺杂α-Al2O3高通量 陶瓷超滤膜 |
作者:张 伟1,陈献富2,范益群2 |
单位: 1. 合肥工业大学智能制造技术研究院,合肥 230041;2. 南京工业大学化工学院,材料化学工程国家重点实验室,南京 210009 |
关键词: 高通量;陶瓷膜;氧化钛;氧化铝;超滤膜 |
DOI号: |
分类号: TQ174 |
出版年,卷(期):页码: 2020,40(5):16-22 |
摘要: |
为制备高通量α-Al2O3陶瓷超滤膜,本文采用改进的溶胶凝胶法,通过在勃姆石溶胶中添加TiO2促进Al2O3膜材料在相对较低的温度下由γ相向α相转变,改变了γ-Al2O3的片层结构,减小了曲折因子。基于溶质截留法,分析了TiO2的添加对膜材料孔径分布的影响。虽然TiO2的添加使得平均孔径有所增加,但提升了孔径分布的均一性。此外,TiO2的添加还提升了膜材料的亲水性。在几方面的综合作用下,制备出高通量的α-Al2O3超滤膜,其平均孔径约为8.2 nm,纯水渗透率约为2300 L/(m2·h·MPa)。与未添加TiO2制备的超滤膜相比,其纯水渗透率提高了65 %左右,但对葡聚糖的截留性能变化不大,截留分子量约为30.0 kDa。 |
To prepare high-flux α-Al2O3 ceramic ultrafiltration membranes, an improved sol-gel method was used in this paper to promote the transition of the alumina membrane material from γ-phase to α-phase at relatively low temperatures by adding titania to the boehmite sol-gel. The lamellar structure of γ-Al2O3 was changed, and the corresponding tortuosity factor was reduced. Based on the solute rejection method, the effect of titania addition on the pore size distribution was analyzed. Although, the addition of titania resulted in an increase in the average pore size, it enhanced the homogeneity of the pore size distribution. In addition, titanium oxide enhanced the hydrophilicity of the membrane material. Finally, a high-flux α-Al2O3 ultrafiltration membrane with an average pore size of about 8.2 nm and a pure water permeability of about 2300 L/(m2·h·MPa) was obtained. Compared to the ultrafiltration membrane obtained without the addition of titania, the permeability of the pure water was increased by about 65%, while the retention of dextran did not change much. The MWCO was kept at the original level of about 30.0 kDa. |
基金项目: |
国家自然科学基金资助项目(21838005, 21921006); 江苏省海洋科技创新专项项目(HY2018-10) |
作者简介: |
张伟(1989-),男,安徽省合肥人,硕士,从事膜分离材料的研究与应用,lever-nasa@163.com |
参考文献: |
[1] 吕晓龙. 疏水膜的污染、润湿与干燥探讨[J]. 膜科学与技术, 2020, 40(1): 196-203. [2] 沈倩, 徐孙杰, 许振良. 糖基掺杂聚酰胺纳滤膜制备及其性能研究[J]. 膜科学与技术, 2020, 40(1): 117-122. [3] 唐元晖, 李沐霏, 林亚凯, 等. 相转化法制膜过程的模型与模拟研究进展[J]. 膜科学与技术, 2020, 40(1): 266-274. [4] Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. [5] Drioli E, Giorno L. Comprehensive membrane science and engineering[M]. Holland: Elsevier, 2010. [6] Li C, Sun W, Lu Z, et al. Ceramic nanocomposite membranes and membrane fouling: A review[J]. Water Res, 2020, 175: 115674. [7] Li W, Xing W, Xu N. Modeling of relationship between water permeability and microstructure parameters of ceramic membranes[J]. Desalination, 2006, 192(1): 340-345. [8] Lv Y, Yang H C, Liang H Q, et al. Novel nanofiltration membrane with ultrathin zirconia film as selective layer[J]. J Membr Sci, 2016, 500: 265-271. [9] Belwalkar A, Grasing E, Van Geertruyden W, et al. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes[J]. J Membr Sci, 2008, 319(1-2): 192-198. [10] Kang Y, Jiao S, Zhao Y, et al. Stainless steel mesh supported TiO2 nanowires membrane with ultra-high flux for separation of oil-in-water mixtures and emulsions[J]. Surf Coat Technol, 2019, 375: 518-526. [11] Chen X, Zhang W, Lin Y, et al. Preparation of high-flux γ-alumina nanofiltration membranes by using a modified sol–gel method[J]. Micropor Mesopor Mat, 2015, 214: 195-203. [12] Lu Y W, Chen T, Chen X F, et al. Fabrication of TiO2-doped ZrO2 nanofiltration membranes by using a modified colloidal sol-gel process and its application in simulative radioactive effluent[J]. J Membr Sci, 2016, 514: 476-486. [13] Hu X B, Yu Y, Zhou J E, et al. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane[J]. J Membr Sci, 2015, 476: 200-204. [14] Hsieh H P. Membrane science and technology[M]. Elsevier, 1996. [15] Krell A, Ma H. Performance of alumina membranes from new nanosynthesis in ultrafiltration and nanofiltration[J]. J Am Ceram Soc, 2003, 86(2): 241-246. [16] Chen X, Lin Y, Lu Y, et al. A facile nanoparticle doping sol–gel method for the fabrication of defect-free nanoporous ceramic membranes[J]. Colloid Interfac Sci Commun, 2015, 5: 12-15. [17] Schaep J, Vandecasteele C, Peeters B, et al. Characteristics and retention properties of a mesoporous γ-Al2O3 membrane for nanofiltration[J]. J Membr Sci, 1999, 163(2): 229-237. [18] Ma H, Krell A, Buse F. Nano-corundum – Synthesis and Use as Filtration Membranes, Catalyst Carriers, Wear Resistant Coatings and Sensors[J]. Chem Eng Technol, 2001, 24(10): 1005-1009. [19] Van Gestel T, Vandecasteele C, Buekenhoudt A, et al. Corrosion properties of alumina and titania NF membranes[J]. J Membr Sci, 2003, 214(1): 21-29. [20] Hsiang H I, Chuang C C, Chen T H, et al. Ti4+ addition effect on alpha-Al2O3 flakes synthesis using a mixture of boehmite and potassium sulfate[J]. Ceram Int, 2010, 36(4): 1467-1472. [21] 蔡晓峰. 氧化铝陶瓷的低温烧结技术[J]. 佛山陶瓷, 2003, 11(82): 1-3. [22] Cai Y, Wang Y, Chen X, et al. Modified colloidal sol–gel process for fabrication of titania nanofiltration membranes with organic additives[J]. J Membr Sci, 2015, 476: 432-441. [23] Chen X F, Qi T, Zhang Y, et al. Facile pore size tuning and characterization of nanoporous ceramic membranes for the purification of polysaccharide[J]. J Membr Sci, 2020, 597: 117631. [24] 严强, 陈奕山, 邱鸣慧, 等. 超声辅助的溶胶-凝胶法制备ZrO2纳滤膜[J]. 膜科学与技术, 2018, 38(6): 90-96. [25] 郭义, 李毅. TEM测定α-Al2O3载体的二次粒子堆积孔大小及分布[J]. 石化技术与应用, 2003, 21(1): 55-57. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号