哌啶功能化聚芳靛红膜制备及电解水性能
作者:杨雄,焉晓明,贺高红
单位: 大连理工大学 石油与化学工程学院,辽宁省盘锦市 124221
关键词: 哌啶;无芳基醚;碱稳定性;阴离子交换膜水电解
DOI号:
分类号: TM911.3;TQ425.236
出版年,卷(期):页码: 2020,40(5):23-30

摘要:
通过对三联苯和靛红的简单可控酸催化缩聚反应成功合成了一种无芳基醚键的聚芳靛红聚合物,而后与1-(6-溴己基)-1-甲基哌啶溴化铵进行季铵功能化反应,制备了哌啶功能化聚芳靛红阴离子交换膜用于碱性电解水制取氢气。膜在30 ℃时的离子传导率达到 33 mS/cm。在80 ℃、1 mol/L KOH溶液中浸泡774 h后膜的离子交换容量可以保持初始值的85%,并且化学结构没有发生明显变化,显示出良好的耐碱稳定性。基于该膜的电池在50 ℃、1 mol/L KOH、2.5 V时的电流密度达到312 mA/cm2,且在200 mA/cm2的电流密度下电池可以稳定运行约33 h。以上结果表明这种膜在碱性电解水领域具有良好的应用前景。
 The aryl ether-free poly(aryl isatin) polymer was successfully synthesized via simple and controllable acid-catalyzed polycondensation reaction of p-Terphenyl and isatin, and then followed the quaternary ammonium functionalized reaction with 1-(6-bromohexyl)-1-methylpiperidinium ammonium bromide to prepare piperidinium functionalized poly(aryl isatin) anion exchange membranes for hydrogen production by alkaline water electrolysis. The membrane showed a ionic conductivity of 33 mS/cm at 30 ℃. The ion exchange capacity can remain 85% of the initial value after the membrane was immersed in 1 mol/L KOH solution at 80 ℃ for 774 h, moreover, no obvious changes in chemical structure happened, showing good alkaline stability. The cell based on this membrane presented a current density of 312 mA/cm2 at 2.5 V under 50 ℃ and 1 mol/L KOH and the cell can run stably for about 33 h at current density of 200 mA/cm2. The above results indicate that this membrane has a good application prospect in the field of alkaline water electrolysis.

基金项目:
国家自然科学基金重点项目(U1663223)

作者简介:
杨雄(1994-),男,湖北省仙桃市人,硕士生,主要从事电解池碱性阴离子交换膜的制备与性能研究。

参考文献:
[1] Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog Energy Combust Sci, 2010, 36: 307-326.
[2] Ursua A, Gandia L M, P. Sanchis P. Hydrogen production from water electrolysis: current status and future trends[J]. P IEEE, 2012, 100: 410-426.
[3] Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review[J]. Renew Sustain Energy Rev, 2018, 81: 1690-1704.
[4] Abbasi R, Setzler B P, Lin S, et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers[J]. Adv Mater, 2019, 31: 1805876.
[5] Shin D W, Guiver M D, Lee Y M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chem Rev, 2017, 117: 4759-4805.
[6] 王保国. 电化学能源转化膜与膜过程研究进展[J]. 膜科学与技术, 2020, 40(1): 179-187.
[7] Arges C G, Zhang L. Anion exchange membranes′ evolution toward high hydroxide ion conductivity and alkaline resiliency[J]. ACS Appl Energy Mater, 2013, 49: 1832-1840.
[8] Christopher G, Arges V R. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes[J]. Proc Natl Acad Sci USA, 2013, 110(7): 2490-2495.
[9] Parrondo J, Arges C G, et al. Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis[J]. RSC Adv, 2014, 4: 9875-9879.
[10] Xiao L, Zhang S, Pan J, et al. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water[J]. Energy Environ Sci, 2012, 5: 7869-7871.
[11] Parrondo J, Ramani V. Stability of poly(2,6-dimethyl 1,4-phenylene)oxide-based anion exchange membrane separator and solubilized electrode binder in solid-state alkaline water electrolyzers[J]. J Electrochem Soc, 2014, 161: F1015-F1020.
[12] Zhang K, McDonald M B, Genina I E A, et al. A highly conductive and mechanically robust OH? conducting membrane for alkaline water electrolysis[J]. Chem Mater, 2018, 30: 6420-6430.
[13] Marinkas A, Lee Y, Lim A, et al. Anion-conductive membranes based on 2-mesityl-benzimidazolium functionalised poly(2,6-dimethyl-1,4-phenylene oxide) and their use in alkaline water electrolysis[J]. Polymer, 2018, 145: 242-251.
[14] Lee N, Duong D T, Kim D. Cyclic ammonium grafted poly (arylene ether ketone) hydroxide ion exchange membranes for alkaline water electrolysis with high chemical stability and cell efficiency[J]. Electrochim Acta, 2018, 271: 150-157.
[15] Tham D D, Kim D. C2 and N3 substituted imidazolium functionalized poly(arylene ether ketone) anion exchange membrane for water electrolysis with improved chemical stability[J]. J Membr Sci, 2019, 581: 139-149.
[16] Mohanty A D, Tignor S E, Krause J A, et al. Systematic alkaline stability study of polymer backbones for anion exchange membrane applications[J]. Macromolecules, 2016, 49: 3361-3372.
[17] Marino M G, Kreuer K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. ChemSusChem, 2015, 8(3): 513-523.
[18] Noh S, Jeon J Y, Adhikari S, et al. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology[J]. Acc Chem Res, 2019, 52: 2745-2755.
[19] Lu W, Yuan Z, Li M, et al. Anion-selective materials with 1,4-diazabicyclo[2.2.2]octane functional groups for advanced alkaline water electrolysis[J]. Electrochim. Acta, 2017, 248: 547-555.
[20] Park E J, Capuano C B, Ayers K E, et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis[J]. J Power Sources, 2018, 375: 367-372.
[21] Su X, Gao L, Hu L, et al. Novel piperidinium functionalized anionic membrane for alkaline polymer electrolysis with excellent electrochemical properties[J]. J Membr Sci, 2019, 581: 283-292.
[22] Aili D, Wright A G, Kraglund M R, et al. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis[J]. J Mater Chem A, 2017, 5: 5055-5066.
[23] Fan J, Cohen S W, Schibli E M, et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability[J]. Nat Commun, 2019, 10: 2306.
[24] Chu X, Shi Y, Liu L, et al. Piperidinium-functionalized anion exchange membranes and their application in alkaline fuel cells and water electrolysis[J]. J Mater Chem A, 2019, 7: 7717-7727.
[25] Li H, Kraglund M R, Reumert A K, et al. Poly(vinyl benzyl methylpyrrolidinium) hydroxide derivedanion exchange membranes for water electrolysis[J]. J Mater Chem A, 2019, 7: 17914-17922.
[26] Vincent I, Kruger A, Bessarabov D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis[J]. Int J Hydrogen Energy, 2017, 42: 10752-10761.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号