燃料电池全氟质子增强膜的制备及其化学降解机理研究
作者:张烁烁12,王 洁12,马晓娟12,宗秀婧12,张永明13,邹业成12
单位: 1.含氟功能膜材料国家重点实验室,山东 桓台 256401;2.山东东岳未来氢能材料有限公司,山东 淄博 256401;3.上海交通大学化学与化工学院,上海 200240
关键词: 燃料电池质子膜;Fenton试剂;耐氧自由基实验;膜寿命测试
DOI号:
分类号: TQ063
出版年,卷(期):页码: 2020,40(5):39-46

摘要:
 质子交换膜是氢燃料电池的核心关键材料,其耐久性直接影响着质子交换膜燃料电池的使用寿命。本文通过溶剂流延法制备了全氟磺酸质子增强膜DMR100,并通过Fenton加速体系对质子交换膜的耐久性进行了研究。结果表明,DMR100表现出优异的化学耐久性:DMR100在Fenton加速体系中化学降解24h后,DMR100的质量损失率为3.96%,质子传导率>35 mS/cm(80℃,50%RH),氟离子释放率为0.14×10-5 mol·L-1,优于两款市场上常用的质子交换膜。•OH、•HOO等自由基攻击质子交换膜高分子链中的C-O-C键,致使侧链发生断裂,逐渐从主链上脱落,质子交换膜性能降低。
Proton exchange membrane is one of the key materials in the PEMFC. Durability of the proton exchange membranes directly affects the lifetime of the PEMFC. This paper prepared perfluorosulfonate proton enhanced membrane by tape casting. We used ex situ accelerate tests to study membrane degradation, soaking a piece of membrane in Fenton’s regent. The results show that DMR100 exhibited excellent chemical durability. After 24 hours of Fenton accelerated reagent treatment, mass loss rate of DMR100 was 3.96%, proton conductivity > 35 mS / cm (80 ℃, 50% RH), and the fluoride ion release rate was 0.14×10-5 mol·L-1, which is better than the two proton exchange membranes commonly used in the fuel cell industry.  Free radicals such as·OH and·HOO attack the C-O-C bond of the main chain and result in the loss of the polymer repeat units and the degrading the durability of the proton exchange membrane.

基金项目:
山东省重大科技创新工程项目(2018YFJH0102)

作者简介:
张烁烁(1994-),女,山东淄博,硕士,工程师助理,山东东岳高分子材料有限公司,含氟功能膜开发与分析,E-mail:shuozhang321@126.com

参考文献:
[1]周未,王金全,仲未秧. PEM燃料电池的应用前景[M]. 2004, 9(4): 208-213
[2]张永明,唐军柯,袁望章. 燃料电池全氟磺酸质子交换膜研究进展[J]. 膜科学与技术, 2011, 31: 76-85.
[3]林陈晓,张秋根,朱爱梅,刘庆林. 燃料电池用阴离子交换膜:基于优化离子电导率的结构调控研究[J]. 膜科学与技术, 2015, 35: 102-108.
[4]张永明. 全氟离子交换膜的研究与应用[J]. 膜科学与技术, 2008, 28: 31-34.
[5]M. K. Kadirov, A. Bosnjakovic, and S. Schlick. Membrane-derived fluorinated radicals detected by ESR in UV-irradiated Nafion and Dow ionomers: the effect of counterions and H2O2[J]. J Phys Chem. B, 2005, 109:7664
[6]王正帮, 唐浩林, 郭伟, 潘牧. 聚乳酸乙醇酸纤维增强全氟磺酸复合质子交换膜的研究[J]. 膜科学与技术, 2011, 31: 60-63.
[7]D. E. Curtin, R. D. Lousenberg, T. J. Henry, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of Power Sources, 2004, 131 (1-2): 41
[8]B. Laconti, M. Hamdan and R. C. McDonald, Mechanisms of membrane of degration[J]. Fuel cell handbook, Wiley, 2003, 3: 652
[9]M. Tarasevich, R. A. Sadkowski, and E. Yeager, Comprehensive Treatise of Electrochemistry[J]. Plenum Press, New York 1983, 7: 301
[10]M. Inaba, H. Yamada, J. Tokunaga et al. Effect of agglomeration of Pr/C catalyst on hydrogen peroxide formation[J]. Electrochem. Solid-State Lett, 2004, 12: A474-A476
[11]T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, et al. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anion[J]. J Electroanal Chem, 2001, 508: 41
[12]Fang X, et al. Degradation of perfluorinated sulfonic acid films: An in-situ infrared spectro-electrochemical study[J]. Polym Degradation Stability, 2009, 94(10): 1707
[13]Hori H, et al. Decomposition of perfluorinated ion-exchange membrane to fluoride Ions using zerovalent metals in subcritical water[J]. Industr Eng Chem Res, 2010, 49(2): 464
[14]Danilczuk M, Coms F D, Schlick S. Visualizing chemical reactions and crossover processes in a fuel cell inserted in the ESR resonator: Detection by spin trapping of oxygen radicals, nafion-derived fragments, and hydrogen and deuterium atoms[J]. J Phys Chem B, 2009, 13(23): 8031
[15]Chen C, Fuller T F. XPS analysis of polymer membrane degradation in PEMFCs[J]. J Electrochem Soc, 2009, 156(10): B1218
[16]Chen C, Fuller T F. The effect of humidity on the degradation of Nafion (R) membrane[J]. Polym Degradation, Stability, 2009, 94(9): 1436
[17]Wang F, et al. Ex situ investigation of the proton exchange membrane chemical decomposition[J]. Int J Hydrog Energy, 2008, 33(9): 2283
[18]Ghassemadeh L, et al. Chemical degradation of proton conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy[J]. J Power Sources, 2009, 186(2): 334
[19]Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951
[20]Zhou C, Guerra M A, Qiu Z M, et al. Chemical durability studies of perfluorinated sulfonic acid polymers and model compounds under mimic fuel cell conditions[J]. Macromolecules, 2007, 40(24): 8695-8707
[21]Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951
[22]Weiss C M, Cohen H, Meyerstein D. Reactions of peroxyl radicals with Fe(H2O2)62+[J]. Journal of Inorganic Biochemistry, 2002, 91(1):199-204
[23]Morgan R A, Sloan W H. Extrusion finish of perfluorinated copolyers[C]. U. S. Patent, 1986, 4626, 587
[24]Tang H L, Shen P K, Jiang S P, et al. A degradation study of Nafion proton exchange membrane of PEM fuel cells[J]. Journal of Power Sources, 2007, 170: 85-92
[25]Fernandes A C, Ticianelli E A. A performance and degradation study of Nafion 212 membrane for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 193: 547-554
[26]Ghassemzadeh L, Peckham T J, Weissbach T, et al. Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer[J]. JACS, 2013, 135: 15923-15932
[27]Iwato Y, Miwa Y, Hyashi E, et al. Extended abstracts of the 42nd battery symposium in Japan[C], Yokohama, 2000, pp 528-529
[28]Ticianelli E A, Derounin C R, Redono A, et al. Methods to advance technology of proton exchange membrane fuel cells[J]. J Electrochem Soc, 1988, 135: 2209-2214

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号