支撑液膜分离技术在高放废液分离中的应用 |
作者:呼逸夫1,周 羽1,矫彩山1,高 杨1 |
单位: 哈尔滨工程大学,哈尔滨市 150001 |
关键词: 高放废液,液膜分离技术,支撑液膜 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2020,40(5):151-160 |
摘要: |
液膜分离技术具有选择性好,分离速度快,分离效率高,设备简单,占地面积小,在高放废液分离领域表现出广阔的应用前景。本文就液膜分离技术的历史沿革、分类、传质机理、在高放废液分离中的研究现状等方面进行了综述,探讨了支撑液膜分离技术距离实现工业化仍存在的主要问题及相应的解决方案。 |
Liquid membrane separation technology has the advantages of good selectivity, fast separation speed, high separation efficiency, simple equipment and small footprint, showing a broad application prospect in the field of separation of high-level radioactive liquid waste. In this paper, the history, classification, mass transfer mechanism of liquid membrane separation technology and the research status of liquid waste separation are reviewed, and the main problems and corresponding solutions of supporting liquid membrane separation technology are discussed. |
基金项目: |
哈尔滨工程大学中央高校基本科研业务费项目(GK2150260176) |
作者简介: |
呼逸夫(1996-),男,黑龙江省大庆市人,硕士生,主要研究平板支撑液膜在高放废液分离中的应用,E-mail:547069632@qq.com |
参考文献: |
[1] Cortina, J. L.; Warshawsky, A. In Ion exchange and solvent extraction; Marinsky, J. A., Marcus, Y., Eds.; Marcel Dekker: New York, 1975; Vol. 13, p 195. [2] 徐世平, 张继荣, 宋崇立. 用无机离子交换法从酸性高放废液中去除铯研究进展[J]. 辐射防护通讯, 2000(06):10-14. [3] 傅颖怡, 丁新更, 窦天军, et al. 吸附技术在高放废液中的应用[J]. 材料导报, 2013, 27(s2):255-258. [4] Li N N, Somerset N J.Separating hy drocarbons w ith liquid membrane[P] .US Pat :3410794 , 1968-11-12 [5] 顾忠茂. 液膜分离技术进展[J]. 膜科学与技术, 2003(4):214-223. [6] Matulevicius E S, Li N N, Facilitated transport through liquid membranes[ J] .Sep Pur Methods, 1975 , 4(1):73-96. [7] 罗上庚.放射性废物处理与处置[M].北京:中国环境科学出版社,2007:152-153. [8] 张卫东, 李爱民, 李雪梅, et al. 液膜技术原理及中空纤维更新液膜[J]. 现代化工, 2005, 25(4):66-68. [9]de Agreda D, Garcia-Diaz I, Lopez F A, et al. Supported liquid membranes technologies in metals removal from liquid effluents[J]. Rev Metal Madrid,2011,47(2):146-168. [10] Shukla J P , Kedari C S , Dharmapurikar G R . Selective Permeation of Plutonium(IV) through a Supported Liquid Membrane Containing Tri-iso-amyl Phosphate as an Ionophore[J]. Journal of Nuclear Science and Technology, 1998, 35(6):419-424. [11] 王东文, 窦天军, 赵玉杰, et al. 支撑液膜处理放射性废液实验研究[C]// 四川省核学会放射化学与化工学术交流会. 2006. [12] Ansari S A , Mohapatra P K , Prabhu D R , et al. Transport of Americium(III) through a supported liquid membrane containing N,N,N’,N’-tetraoctyl-3-oxapentane diamide (TODGA) in n-dodecane as the carrier[J]. Journal of Membrane Science, 2006, 282(1-2):133-141. [13] Ansari S A , Mohapatra P K , Prabhu D R , et al. Evaluation of N,N,N’,N’-tetraoctyl-3-oxapentane-diamide (TODGA) as a mobile carrier in remediation of nuclear waste using supported liquid membrane[J]. Journal of Membrane Science, 2007, 298(1-2):169-174. [14] Ansari S A , Mohapatra P K , Prabhu D R , et al. Transport of lanthanides and fission products through supported liquid membranes containing N,N,N′,N′-tetraoctyl diglycolamide (TODGA) as the carrier[J]. Desalination, 2008, 232(1-3):254-261. [15] Panja S , Mohapatra P K , Tripathi S C , et al. Studies on uranium(VI) pertraction across a N,N,N’N’-tetraoctyldiglycolamide (TODGA) supported liquid membrane[J]. Journal of Membrane Science, 2009, 337(1-2):274-281. [16] Panja S , Mohapatra P K , Kandwal P , et al. Pertraction of plutonium in the +4 oxidation state through a supported liquid membrane containing TODGA as the carrier [J]. Desalination, 2010, 262(1-3):57-63. [17] Panja S , Mohapatra P K , Tripathi S C , et al. Supported liquid membrane transport studies on Am(III), Pu(IV), U(VI) and Sr(II) using irradiated TODGA[J]. Journal of Hazardous Materials, 2012, 237-238(none):339-346. [18] Zaheri P , Abolghasemi H , Mohammadi T , et al. Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier[J]. Chemical Papers, 2015, 69(2):279-290. [19] Efficient transport of Am(III) from nitric acid medium using a new conformationally constrained (N,N,N’,N’-tetra-2-ethylhexyl)7-oxabicyclo[2.2.1]heptane-2,3-dicarboxamide across a supported liquid membrane[J]. Journal of Hazardous Materials, 2016, 305:171-177. [20] Tehrani B M, Rahbar-Kelishami A. Intensification of gadolinium(III) separation by effective utilization of nanoliquids in supported liquid membrane using Aliquat 336 as carrier[J]. Chemical Papers, 2018(2):1-8. [21] Prithwish S , Dayamoy B , Sharma J N , et al. Separation of Sr(II) from Eu(III) across a supported liquid membrane using TEHDGA and 18-crown-6[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(2):919-923. [22] Özevci, Gülçin, Sert, ?enol, Eral M . Optimization of Lanthanum Transport Through Supported Liquid Membranes Based on Ionic Liquid[J]. Chemical Engineering Research and Design, 2018, 140:1-11. [23] Chandrakant S. Gholapa, S. Panjab,?,etc.Supported liquid membrane transport studies of Pu(IV) using OTDA, a novel diamide[J].Journal of Environmental Chemical Engineering,2018,7(1): 1-9. [24] Pahan S , Roy P S , Panja S , et al. Transport behavior of actinides and lanthanides across a supported liquid membrane using an unexplored monoamide, N,N’-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA)[J]. Radiochimica Acta, 2018, 106(5): 367-371. [25] Mahanty B , Mohapatra P K , Leoncini A , et al. Pertraction of americium(III) through supported liquid membranes containing benzene-centered tripodal diglycolamides (Bz-T-DGA) as an extractant/carrier[J]. Chemical Engineering Research and Design, 2019, 141:84-92. [26] Rohit Kumar, Seraj A.Ansari, Pankaj Kandwal, Prasanta K.Mohapatra. Pertraction of U(VI) through liquid membranes using monoamides as carrier ligands: experimental and theoretical studies[J]. Journal of Radioanalytical and Nuclear Chemistry. 2020, 323(2):983-991. [27] 易涛, 严纯华, 李标国, et al. 平板夹心型支撑液膜萃取体系中La的迁移行为[J]. 中国稀土学报, 1995(3):197-200. [28] Ho W S W.Removal and recovery of radionuclides (e. g. strontium) or metals (e. g. calcium) from waste water and process streams, involves using combination of supported liquid membrane and strip dispersion[P].US6328782-B1. 2001-12-11. [29] 裴亮, 姚秉华, 付兴隆, et al. La(III)Transport in Dispersion Supported Liquid Membrane Including PC-88A as the Carrier and HCl Solution as the Stripping Solution[J]. 过程工程学报, 2008, 8(6):1041-1050. [30] Pei L , Yao B , Fu X . Study on transport of Dy(III) by dispersion supported liquid membrane[J]. Journal of Rare Earths, 2009, 27(3):447-456. [31] Pei L,WANG Liming,YU Guoqiang.Separation of Eu(III) with supported dispersion liquid membrane system containing D2EHPA as carrier and HNO3 solution as stripping solution[J].,2011,29(1):7-14. [32] Pei L , Wang L , Guoqiang Y U . Study on a novel flat renewal supported liquid membrane with D2EHPA and hydrogen nitrate for neodymium extraction[J]. Journal of Rare Earths, 2012, 30(1):63–68. [33] 赵楠, 裴亮. 分散支撑液膜法处理含Tb(Ⅲ)和Dy(Ⅲ)稀土废水[J]. 化工时刊, 2017(10):9-14. [34] Sidhoum M , Sengupta A , Sirkar K K . Asymmetric cellulose acetate hollow fibers: Studies in gas permeation[J]. AIChE Journal, 1988, 34(3):417-425. [35] Yang X J , Fane A G , Soldenhoff K . Comparison of Liquid Membrane Processes for Metal Separations: Permeability, Stability, and Selectivity[J]. Industrial & Engineering Chemistry Research, 2003, 42(2):392-403. [36] Tatjana M Trti?-Petrovi?, Ksenija R Kumri?, Jelena S Dordevi?, et al. Extraction of lutetium(III) from aqueous solutions by employing a single fibre-supported liquid membrane[J]. Journal of Separation Science, 2010, 33(13):2002-2009. [37] 夏洁. 中空纤维膜萃取分离Ce(III)/Pr(III)的研究[D]. 北京化工大学, 2013. [38] Wannachod T , Mohdee V , Suren S , et al. The separation of Nd(III) from mixed rare earth via hollow fiber supported liquid membrane and mass transfer analysis[J]. Journal of Industrial and Engineering Chemistry, 2014, 26: 214-217. [39] Vernekar P V , Jagdale Y D , Sharma A D , et al. Simultaneous Extraction of Neodymium and Uranium using Hollow Fiber Supported Liquid Membrane[J]. Separation Science and Technology, 2014, 49(10):1509-1520. [40] Wannachod T , Leepipatpiboon N , Pancharoen U , et al. Separation and mass transport of Nd(III) from mixed rare earths via hollow fiber supported liquid membrane: Experiment and modeling[J]. Chemical Engineering Journal, 2014, 248:158-167. [41] Jagasia P , Dhami P S , Mohapatra P K , et al. Recovery of Radio-Cesium from Actual High Level Liquid Waste Using Solvents Containing Calix[4]arene-crown-6 Ligands[J]. Journal of Environmental Chemical Engineering, 2017, 5(4):4134-4140. [42] Chaudhury S , Bhattacharyya A , Ansari S A , et al. A New Approach for Selective Cs +, Separation from Simulated Nuclear Waste Solution Using Electrodriven Cation Transport Through Hollow Fiber Supported Liquid Membranes[J]. Journal of Membrane Science, 2017, 545:75-80. [43] Yadav K K , Singh D K , Kain V . Separation of terbium from aqueous phase employing hollow fibre supported liquid membrane with EHEHPA as carrier[J]. Separation Science and Technology, 2019, 54(9):1521-1532. [44] Bhattacharyya A , Ansari S A , Prabhu D R , et al. Highly efficient separation of Am(III) and Eu(III) using an aqueous soluble sulfonated BTP derivative by hollow-fiber supported liquid membrane containing TODGA[J]. Separation Science and Technology, 2019, 54(9):1512-1520. [45] 张卫东, 李爱民, 李雪梅, et al. 液膜技术原理及中空纤维更新液膜[J]. 现代化工, 2005, 25(4):66-68. [46] Pei L , Wang L , Guo W , et al. Stripping dispersion hollow fiber liquid membrane containing PC-88A as carrier and HCl for transport behavior of trivalent dysprosium[J]. Journal of Membrane Science, 2011, 378(1-2):520-530. [47] 裴亮, 王理明, 郭维, et al. 反萃更新中空纤维液膜对四价铈的回收提取研究[J]. 稀有金属材料与工程, 2012(S2),41 :632-635. [48] Pei L , Wang L , Guo W , et al Stripping dispersion hollow fiber liquid membrane containing carrier PC-88A and HNO3 for the extraction of Sm(III) [J]. Chinese Chemical Letters, 2012(01):105-108. [49] Allahyari S A , Ahmadi S J , Minuchehr A , et al. Th(IV) recovery from aqueous waste via hollow fiber renewal liquid membrane (HFRLM) in recycling mode: modelling and experimental validation[J]. Rsc Advances, 2017, 7(12):7413-7423. [50] Danesi P. Separation of metal species by supported liquid membranes[ J] .Sep Sci Technol, 1984-85, 19(11-12):857-894. [51] Zha F F, Fane A , Fell C , et al .Critical displacement pressure of a supported liquid membrane[ J] .J MembrSci, 1992 , 75 :69-80. [52]Neplenbroek A M , Bargeman D, Smolders C A.Supported liquid membranes:instability effects[ J] .J Membr Sci, 1992 , 67 :121 -132. [53] 王俊九, 褚立强, 范广宇,等. 支撑液膜分离技术[J]. 水处理技术, 2001, 27(4):187-191. [54] Lamb J D, Bruening R, Izatt R M , et al .Characterization of a supported liquid membrane for macrocycle-mediated selective cation transport[ J] .J Membr Sci , 1988, 37 :13-26. [55] Neplenbroek A M , Bargeman D , Smolders C A . Mechanism of supported liquid membrane degradation: emulsion formation[J]. Journal of Membrane Science, 1992, 67(2-3):133-148. [56] Takeuchi H , Nakano M . Progressive wetting of supported liquid membranes by aqueous solutions[J]. journal of membrane science, 1989, 42(1):183-188. [57] Neplenbroek A M , Bargeman D , Smolders C A . Mechanism of supported liquid membrane degradation: emulsion formation[J]. Journal of Membrane Science, 1992, 67(2-3):133-148. [58] Fabiani C , Merigiola M , Scibona G , et al. Degradation of supported liquid membranes under an osmotic pressure gradient[J]. Journal of Membrane Science, 1987, 30(1):97-104. [59] Danesi P R , Reichley-Yinger L , Rickert P G . Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water transport on the long-term stability of the membranes[J]. Journal of Membrane Science, 1987, 31(2-3):117-145. [60] Neplenbroek A M , Bargeman D , Smolders C A . Supported liquid membranes: instability effects[J]. Journal of Membrane Science, 1992, 67(2-3):121-132. [61] Neplenbroek A M , Bargeman D , Smolders C A . Mechanism of supported liquid membrane degradation: emulsion formation[J]. Journal of Membrane Science, 1992, 67(2-3):133-148. [62] Zha F F , Fane A G , Fell C J D . Instability mechanisms of supported liquid membranes in phenol transport process[J]. Journal of Membrane Science, 1995, 107(1-2):59-74. [63] Rathore N S , Sonawane J V , Kumar A , et al. Hollow fiber supported liquid membrane: A novel technique for separation and recovery of plutonium from aqueous acidic wastes[J]. Journal of Membrane Science, 2001, 189(1):119-128. [64] W C Babcock, R W Baker, et al. Coupled Transport Membranes for Metal Separations [R]. NTIS Rep, 1979, 59- 70. [65] Teramoto M , Takeuchi N , Maki T , et al. Ethylene/ethane separation by facilitated transport membrane accompanied by permeation of aqueous silver nitrate solution[J]. Separation and Purification Technology, 2002, 28(2):117-124. [66]Deetz D W,Kreevoy M M. Stabilized liquid films: US, 4710205[P].1987–12–01. [67] Neplenbroek A M , Bargeman D , Smolders C A . The stability of supported liquid membranes[J]. Desalination, 1990, 79(2):303-312. [68] 金美芳, Strathmann H. 复合支液膜[J].水处理技术, 2000. 26(1):18-21. [69] 史腾华, 贾悦, 吕晓龙, et al. 基于界面聚合法于复合层中添加载体对支撑液膜增进作用的初步研究[J]. 膜科学与技术, 2017(05):64-70. [70] Lacan P , Guizard C , Gall P L , et al. Facilitated transport of ions through fixed-site carrier membranes derived from hybrid organic-inorganic materials[J]. Journal of Membrane Science, 1995, 100(2):99-109. [71] S D Alexandratos, P R Danesi, E P Horwitz. Interpenetrating Polymer Network Ion Exhange Membranes and M ethod for Preparing Same [P]. U S Patent 4879316, 1989. [72] 金美芳, 王俊九, 周谨, et al. 液晶化载体促进传递膜的研究[J]. 膜科学与技术, 2003, 23(3):5-10. [73] Scovazzo P , Visser A E , Davis J H , et al. Supported Ionic Liquid Membranes and Facilitated Ionic Liquid Membranes[J]. ChemInform, 2002, 33(48):240-240. [74] Cumming, I W, Tuener, et al. Optizimation of an UF Pilot-Plant for the treatment of radioactive-waste. Proc Future and Prospects Membrane Proc Conf. Belgium:Brussels, 1988: 163-170. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号