单乙醇胺和二氧化碳对聚酰胺反渗透复合膜的影响 |
作者:刘伟良,马晓华 |
单位: 化学工程联合国家重点实验室,华东理工大学化学工程研究所膜科学与工程研发中心,上海 200237 |
关键词: 膜;二氧化碳;界面聚合;酸吸收剂;单乙醇胺;脱盐 |
DOI号: |
分类号: TQ 316.4 |
出版年,卷(期):页码: 2020,40(6):1-6 |
摘要: |
聚酰胺反渗透复合膜占据了反渗透膜的主要市场,其分离性能主要由聚酰胺分离层的结构和性能决定,是目前研究的热点。采用纳米发泡的方法调控聚酰胺分离层的微纳结构,通过在水相中加入乙醇胺调控二氧化碳的溶解度,借以调控聚酰胺分离层的形貌,考察单乙醇胺用量对聚酰胺反渗透复合膜结构和性能的影响。采用扫描电子显微镜、动态接触角测试仪、傅里叶红外光谱和过滤实验对聚酰胺反渗透复合膜结构和性能进行表征。结果表明一定量乙醇胺的加入可以有效地改变膜的表面形貌,影响其表面性质,1%的添加量下可使膜的通量提升31.5%。 |
Polyamide (PA) reverse osmosis (RO) thin-film composite (TFC) membranes dominate the market of RO membrane. The separation performance of the RO TFC membrane is mainly determined by the structure and property of the PA separation layer. In this paper, a nanofoaming method was used to adjust the micro-nano structure of the PA separation layer. By adding monoethanolamine (MEA) to the aqueous phase to adjust the solubility of carbon dioxide, the morphology of the PA separation layer was adjusted. The effect of the amount of MEA on the structure and performance of RO membrane was investigated. The surface morphology and separation performance of the RO membrane were characterized by scanning electron microscope, dynamic contact angle tester, fourier infrared spectroscopy and filtering experiments. The results showed that the addition of a certain amount of MEA can effectively change the surface morphology of the membrane, affect its surface properties and improve the separation performance. |
基金项目: |
国家自然科学基金项目(21978081 |
作者简介: |
刘伟良(1995-),男,上海,硕士研究生,研究方向:反渗透膜的制备与改性,E-mail:bc1995lwl@foxmail.com |
参考文献: |
[1] Hermans S, Bernstein R, Volodin A, et al. Study of synthesis parameters and active layer morphology of interfacially polymerized polyamide-polysulfone membranes[J]. Reactive and Functional Polymers, 2015, 86: 199-208. [2] Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches[J]. Water Research, 2015, 80: 306-324. [3] Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination-Development to date and future potential[J]. Journal of Membrane Science, 2011, 370(1-2): 1-22. [4] Ghosh A K, Jeong B H, Huang X, et al. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties[J]. Journal of Membrane Science, 2008, 311(1-2): 34-45. [5] Xu J, Yan H, Zhang Y, et al. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes[J]. Journal of Membrane Science, 2017, 541: 174-188. [6] Kamada T, Ohara T, Shintani T, et al. Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux[J]. Journal of Membrane Science, 2014, 467: 303-312. [7] Freger V. Kinetics of film formation by interfacial polycondensation[J]. Langmuir, 2005, 21(5): 1884-1894. [8] Khorshidi B, Thundat T, Pernitsky D, et al. A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane[J]. Journal of Membrane Science, 2017, 535: 248-257. [9] Al-Hobaib A S, Alsuhybani M S, Al-Sheetan K M, et al. Reverse osmosis membranes prepared by interfacial polymerization in n-heptane containing different co-solvents[J]. Desalination And Water Treatment, 2016, 57(36): 16733-16744. [10] Khorshidi B, Thundat T, Fleck B A, et al. A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes[J]. Scientific Reports, 6: 22069. [11] Lind M L, Ghosh A K, Jawor A, et al. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes[J]. Langmuir, 2009, 25(17): 10139-10145. [12] Peng L E, Yao Z K, Liu X, et al. Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications[J]. Environmental Science & Technology, 2019, 53(16): 9764-9770. [13] Ma X, Yang Z, Yao Z, et al. Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance[J]. J Colloid Interface Sci, 2019, 540: 382-388. [14] Ben U, Z. R G. Temperature measurement of the reaction zone during polyamide film formation by interfacial polymerization[J]. Journal of Membrane Science, 2018,566:329-335. [15] 李清方, 陆诗建, 张建, et al. 搅拌法对TEA溶液吸收和解吸CO_2的实验研究[J]. 陕西科技大学学报(自然科学版), 2009, 27(04): 48-51. [16] 杨洁, 严晋跃, 于新海, et al. 基于醇胺+[bmim][BF_4]+H_2O溶液的CO_2捕捉工艺[J]. 华东理工大学学报(自然科学版), 2013, 39(06): 641-647. [17] Ma X H, Yao Z, Yang Z, et al. Nano-foaming of Polyamide Desalination Membranes to Tune Permeability and Selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2):123-130. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号