电纺聚砜咪唑膜的分子动力学与DFT计算研究 |
作者:付 争,陈婉婷,李甜甜,吴雪梅,宫 雪,高 敏,张 奇,贺高红 |
单位: 大连理工大学 精细化工国家重点实验室,膜科学与技术研究中心,化工学院,大连116024 |
关键词: 阴离子交换膜;静电纺丝;分子动力学模拟;DFT计算 |
DOI号: |
分类号: |
出版年,卷(期):页码: 2020,40(6):44-50 |
摘要: |
本文采用分子动力学模拟和密度泛函理论(DFT),通过径向分布函数、弱相互作用以及能量分析,提出静电纺丝静电场作用下聚砜咪唑(IMPsf)的二甲基甲酰胺(DMF)溶液成膜过程中离子簇的形成机制。与浇铸条件下氯离子(Cl-)桥联咪唑功能基团不同,在电纺条件下,DMF偶极矩增大,DMF与咪唑功能基团的氢键作用增强,DMF挥发时带动功能基团向相界面运动,倾向于在纤维表面聚集形成离子通道。静电场作用还可以打破咪唑功能基团与聚砜主链之间存在π-π堆叠吸引作用,从而促进功能基团形成微观相分离,提高膜电导率。 |
In this paper, molecular dynamics simulation and density functional theory (DFT) calculations are used to study the interaction between the components in the imidazole-functionalized polysulfone (IMPsf)- dimethylformamide (DMF) solution. Through analysis of the radial distribution function between different molecules, weak interactions and energy of hydrogen bonds, mechanism for the formation of ion clusters during the process of electrospinning are proposed. In casting conditions, chlorides are used as intermediates to connect the imidazole functional groups of different chains. Under electrospinning conditions, the effect of DMF and imidazole functional groups is enhanced, so DMFs drive the functional groups toward the interface and imidazoles gather outside the fiber to form ion channels. For IMPsf-DMF solution, there is a π-π conjugated attraction between imidazole and polysulfone main chain. Under electrospinning conditions, functional groups are separated from the main chains under the action of DMFs and electric field, thereby promoting microscopic phase separation and forming ion channels, which will improve the ion conductivity of membrane. |
基金项目: |
国家自然基金(21476044,21406031),大连理工大学超算中心支持 |
作者简介: |
付争(1994-),男,广东省清远人,研究方向为阴离子交换膜,936189985@qq.com |
参考文献: |
[1] Sharaf O Z, Orhan M F. An overview of fuel cell technology: Fundamentals and applications [J]. Renewable & Sustainable Energy Reviews, 2014, 32: 810-853. [2] Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review [J]. Journal of Membrane Science, 2011, 377(1-2): 1-35. [3] Gong X, Dai Y, Yan X, et al. Electrospun imidazolium functionalized multiwalled carbon nanotube/ polysulfone inorganic-organic nanofibers for reinforced anion exchange membranes [J]. International Journal of Hydrogen Energy, 2018, 43(46): 21547-21559. [4] Li Y, Liu Y, Savage A M, et al. Polyethylene-Based Block Copolymers for Anion Exchange Membranes [J]. Macromolecules, 2015, 48(18): 6523-6533. [5] He Y, Pan J, Wu L, et al. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes [J]. Scientific Reports, 2015, 5: 1-7. [6] Ponce-Gonzalez J, Whelligan D K, Wang L, et al. High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes [J]. Energy & Environmental Science, 2016, 9(12): 3724-3735. [7] 王云晴, 苑倩倩, 吴雪梅,等. SGO/SPEEK同轴电纺纤维质子交换膜的制备[J]. 膜科学与技术, 2019, 39(04):1-7. [8] Dong B, Gwee L, Salas-De La Cruz D, et al. Super proton conductive high-purity nafion nanofibers [J]. Nano Lett, 2010, 10(9): 3785-3790. [9] Liu Q, Zhu J, Zhang L, et al. Recent advances in energy materials by electrospinning [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1825-1858. [10] Jirsák J, Mou?ka F, Nezbeda I. Insight into Electrospinning via Molecular Simulations [J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8257-8264. [11] Nezbeda, Jirsák, Mou?ka, et al. Application of molecular simulations: Insight into liquid bridging and jetting phenomena [J]. Condensed Matter Physics, 2015, 18(1): 1-10. [12] Tamura T, Kawakami H. Aligned electrospun nanofiber composite membranes for fuel cell electrolytes [J]. Nano Lett, 2010, 10(4): 1324-1328. [13] Rocco E, Collaboration C. The COMPASS future: COMPASS II [J]. Progress in Particle and Nuclear Physics, 2012, 67(2): 288-293. [14] Park C H, Kim T-H, Kim D J, et al. Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membranes [J]. International Journal of Hydrogen Energy, 2017, 42(32): 20895-20903. [15] Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. [16] Boto R A, Contreras-Garcia J, Tierny J, et al. Interpretation of the reduced density gradient [J]. Molecular Physics, 2016, 114(7-8): 1406-1414. [17] Fuster F, Grabowski S J. Intramolecular Hydrogen Bonds: the QTAIM and ELF Characteristics [J]. Journal of Physical Chemistry A, 2011, 115(35): 10078-10086. [18] Emamian S, Lu T, Kruse H, et al. Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory [J]. Journal of Computational Chemistry, 2019, 40(32): 2868-2881. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号