聚电解质-TiO2改性PVDF多孔膜及其电化学性能 |
作者:杨 蕊1,秦振平1,李明晔2,赵 耀2,王 峰1,李 钒1,郭红霞2 |
单位: 1北京市绿色催化与分离重点实验室,北京工业大学环境与化工学院,100124; |
关键词: 聚偏氟乙烯多孔膜;锂离子电池隔膜;离子电导率;电池循环性能 |
DOI号: |
分类号: TB43 |
出版年,卷(期):页码: 2020,40(6):51-57 |
摘要: |
采用聚电解质改性的TiO2纳米粒子与聚电解质复合对聚偏氟乙烯(PVDF)多孔膜进行杂化改性,制备了PVDF/聚电解质-TiO2杂化复合膜,考察了改性前后复合膜的界面阻抗与离子电导率变化及其作为锂离子电池隔膜的充放电性能。结果表明, PDDA与TiO2 纳米粒子杂化改性的PVDF复合隔膜的电化学性能优于PVDF原膜,其界面阻抗由原膜的114.5Ω下降至96.9Ω,离子电导率由原膜的1.61×10-4 S/cm升高至3.12×10-4 S/cm,且采用该复合隔膜组装的锂离子电池在0.2C倍率下充放电循环100圈后,放电比容量保持率为75.5 %。 |
The PVDF porous membrane was coated by the hybrid of polyelectrolyte and the modified TiO2 nanoparticles for using as lithium-ion battery separator. The variation of interface impedance, ionic conductivity and the electrochemical property of PVDF membrane before and after modification were investigated respectively. The results showed that the electrochemical performance of the modified PVDF/PDDA-TiO2 separator was obviously improved comparing with that of PVDF pristine membrane. The ionic conductivity of the PVDF/PDDA-TiO2 separator increased from 1.61×10-4 S/cm to 3.12×10-4 S/cm, while the interface impedance decreased from 114.5 Ω of the pristine PVDF separator to 96.9 Ω of the PVDF/PDDA-TiO2 separator. When the separator was assembled into lithium-ion battery, the discharged specific capacity was 75.5% after 100 cycles at 0.2C ratio. |
基金项目: |
国家自然科学基金(21878003),国家自然科学基金创新群体(51621003) |
作者简介: |
杨蕊(1997-),女,北京市人,本科生,研究方向为聚电解质功能杂化膜 |
参考文献: |
[1] Yuan M, Liu K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries [J]. J. Energy Chem., 2020, 43:58-70. [2] Kim K J, Kwon Y K, Yim T, et al. Functional separator with lower resistance toward lithium ion transport for enhancing the electrochemical performance of lithium ion batteries [J]. J. Ind. Eng. Chem. 2019, 71:228-233. [3] Zhang K, Xiao W, Liu J, et al. A Novel Self-Binding Composite Separator Based on Poly(tetrafluoroethylene) Coating for Li-Ion Batteries [J]. Polymers, 2018, 10(12):1409 (1-13). [4] 王健, 温乐乐, 秦德君, 等. 熔喷法制备优异热阻隔性能的锂离子电池隔膜[J]. 膜科学与技术, 2015, 35(06):33-39. [5] Song K, Zhang P, Huang Y, et al. lectrospun PU/PVP/GO Separator for Li-ion Batteries [J]. Fiber Polym., 2019, 20(5):961-965. [6] Kim M, Park J H. Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery [J]. J. Power Sources, 2012, 212:22-27. [7] Huang X, Hitt J. Lithium ion battery separators: Development and performance characterization of a composite membrane [J]. J. Membr. Sci., 2013, 425-426:163-168. [8]武利顺, 孙俊芬, 王庆瑞. 聚偏氟乙烯膜研究进展[J]. 膜科学与技术, 2004, (05):63-68. [9]许振良, 翟晓东, 陈桂娥. 高孔隙率聚偏氟乙烯中空纤维超滤膜的研究[J]. 膜科学与技术, 2000, (04):10-13. [10]姜智旭, 贾金兰, 石璐, 等. L-精氨酸改性PVDF抗凝血膜的制备及血液相容性研究 [J]. 功能材料, 2015, 46(23):23109-23114. [11]杨小进, 罗鑫, 刘东亮. 光伏组件封装用背板概述及发展趋势 [J]. 太阳能, 2017, (11):25-29. [12] Wei W., Zhang, H. Li X., et al. Vankelecomc, Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability, Phys. Chem. Chem. Phys., 2013, 15:1766-1771 [13] Wang Y., Yin C., Song Z., et al. Application of PVDF organic particles coating on polyethylene separator for lithium ion batteries [J]. Materials, 2019, 12: 3125 [14] Min-Young A., Hee-Tak K., Duck-Rye C. Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVDF nanofiber layer for lithium batteries [J]. J. Solid State Electrochem, 2014, 18(7):1807-1814. [15]安亚强, 张汉鸿, 吴春丹, 等. 锂离子电池水性PVDF涂覆隔膜研究进展 [J]. 广东化工, 2019, 46(10):100-101. [16] Costa C. M., Rodrigues H. M., Gören A., et al. Preparation of poly(vinylidene fluoride) lithium-ion battery separators and their compatibilization with ionic liquid – a green solvent approach [J]. Chem. Europe, 2017, 2(19): 5394-5402 [17] Jarvis C. R., Macklin W. J., Macklin A. J. et al. Use of grafted PVdF-based polymers in lithium batteries [J]. J. Power Sources. 2001, 97-98:664-666 [18] Li Y, Qin Z, Guo H, et al. Low-temperature synthesis of anatase TiO2 nanoparticles with tunable surface charges for enhancing photocatalytic activity[J]. PLoS One, 2014, 9, e114638:1–19. [19] Siekierski M, Wieczorek W, Przyluski J. AC conductivity studies of composite polymeric electrolytes [J]. Electrochimica Acta, 1998, 43(10-11): 1339-1342. [20] Raghavan P, Manuel J, Zhao X, et al. Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries [J]. J. Power Sources, 2011, 196(16): 6742-6749. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号