聚砜多孔支撑膜的结构调控及表征 |
作者:白金亮,张守海,武亚伟,李战胜,蹇锡高 |
单位: 大连理工大学 化工学院,辽宁省高性能树脂工程技术研究中心,大连116024 |
关键词: 聚砜;支撑膜;海绵状结构;孔径和孔径分布 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2020,40(6):65-70 |
摘要: |
适宜的多孔支撑膜是制备高性能反渗透复合膜的基础。以聚砜(PSf)为膜材料,N,N-二甲基乙酰胺(DMAc)为溶剂,-丁内酯(GBL)为第二溶剂,异丙醇(IPA)为非溶剂添加剂,纯水为凝胶剂,采用浸没沉淀法制备了一系列平板支撑膜,考察了DMAc/GBL质量比、邻近比值对铸膜液黏度和膜结构和性能的影响。结果表明,随DMAc/GBL质量比减小,铸膜液的黏度增大,聚砜平板膜的结构形态由指状孔结构向海绵状结构转变,膜表面孔径减小,孔径分布变窄;随值的增大,铸膜液的黏度增大,指状孔的形成受到抑制,逐渐转变为海绵状膜结构,孔径分布变宽。 |
The porous support membrane is critical for the fabrication of the high-performance reverse osmosis composite membranes. A series of flat membranes were prepared by immersion precipitation method using polysulfone (PSf) as the membrane material, N,N-dimethylacetamide (DMAc) as the solvent, -butyrolactone (GBL) as the second solvent, isopropyl alcohol (IPA) as the non-solvent additive, and water as the coagulation agent. The effects of DMAc/GBL mass ratio and approaching ratio on the viscosity of the casting solution, the membrane structure and performance were discussed herein. The results showed that as the DMAc/GBL mass ratio decreased, the viscosity of the casting solution increased, the polysulfone flat membrane changed from finger-like structure to sponge-like structure, the membrane surface pore size decreased, and the pore size distribution became narrow. As the value of increased, the viscosity of the casting solution increased, the formation of finger-like pores was suppressed, and membranes gradually changed to sponge-like pore structure, and the pore size distribution became wide |
基金项目: |
国家重点研发计划项目(2017YFB0307600);中央高校基本科研业务费资助项目(DUT19ZD404) |
作者简介: |
白金亮(1994-),男,硕士研究生,研究方向为功能高分子膜材料及分离膜。E-mail:liang13050621604@qq.com。 |
参考文献: |
[1] STRATHMANN H. Introduction to Membrane Science and Technology [M]. Weinheim: Wiley-VCH, 2013. [2] LAU W J, ISMAIL A F, MISDAN N, et al. A recent progress in thin film composite membrane: A review [J]. Desalination, 2012, 287: 190-199. [3] 俞三传, 金可勇, 高从堦. 高性能聚砜支撑膜研制 [J]. 膜科学与技术, 1999, 06): 45-7+55. [4] BAKER R. Membrane Technology and Applications [M]. Third ed. Chichester: Wiley, 2012. [5] RAMON G Z, WONG M C Y, HOEK E M V. Transport through composite membrane, part 1: Is there an optimal support membrane? [J]. Journal of Membrane Science, 2012, 415-416: 298-305. [6] ZHANG Z, AN Q, LIU T, et al. Fabrication of polysulfone ultrafiltration membranes of a density gradient cross section with good anti-pressure stability and relatively high water flux [J]. Desalination, 2011, 269(1): 239-48. [7] LIU F, WANG L, LI D, et al. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification [J]. RSC Adv, 2019, 9(61): 35417-28. [8] 朱姝, 赵颂, 王志, 等. 用于反渗透复合膜的海绵状结构支撑膜制备研究 [J]. 化工学报, 2015, 66(10): 3991-3999. [9] GHOSH A K, HOEK E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes [J]. Journal of Membrane Science, 2009, 336(1-2): 140-148. [10] MISDAN N, LAU W J, ISMAIL A F, et al. Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics [J]. Desalination, 2013, 329: 9-18. [11] ZHU S, ZHAO S, WANG Z, et al. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate [J]. Journal of Membrane Science, 2015, 493: 263-274. [12] SHARABATI J-A-D, GUCLU S, ERKOC-ILTER S, et al. Interfacially polymerized thin-film composite membranes: Impact of support layer pore size on active layer polymerization and seawater desalination performance [J]. Sep Purif Technol, 2019, 212: 438-448. [13] KNEIFEL K, PEINEMANN K V. Preparation of hollow fiber membranes from polyetherimide for gas separation [J]. Journal of Membrane Science, 1992, 65(3): 295-307. [14] LI Z, REN J, FANE A G, et al. Influence of solvent on the structure and performance of cellulose acetate membranes [J]. Journal of Membrane Science, 2006, 279(1): 601-607. [15] 周敬倩, 任吉中, 林立,等. γ-丁内酯对聚醚酰亚胺膜结构形态的影响 [J]. 膜科学与技术, 2009, 29(4): 34-38. [16] 王连军, 李杨, 胡义, 等. 气体分离复合膜的聚丙烯腈支撑底膜的制备与表征 [J]. 膜科学与技术 2015, 35(2): 48-52. [17] REN J Z, LI Z S, WONG F S. A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes [J]. Journal of Membrane Science, 2006, 279(1-2): 558-569. [18] HANSEN C M, EDITOR. Hansen Solubility Parameters: A User's Handbook [M]. CRC Press LLC, 2007. [19] 何涛, 江成璋. 聚醚砜微孔膜制备中非溶剂添加剂作用研究 [J]. 膜科学与技术, 1998, 18(3): 45-50. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号