体外膜氧合系统中膜材料的研究进展
作者:铁娟1,张彩丽12,翁云宣12
单位: 1.化学与材料工程学院,北京工商大学,北京,100048
关键词: 膜式人工肺;氧合器;高分子材料;中空纤维膜;气体分离膜
DOI号:
分类号: TB324
出版年,卷(期):页码: 2020,40(6):141-147

摘要:
体外膜氧合技术(Extracorporeal membrane oxygenation, ECMO)的发展和应用,为危重病人的治疗提供了可能. ECMO装置的主要部件之一是气体渗透膜,它是将血液与气相分离的屏障,能有效和安全地支持血液中的气体交换过程. 自20世纪50年代以来,ECMO技术的发展一直致力于提高膜的使用安全性和使用寿命,这导致了能提供数周体外生命支持的氧合器的出现. 60多年来,ECMO的发展从膜材料的选择和膜组件结构设计两方面都经历了一系列的演变. 本文综述了体外膜氧合技术的发展过程,包括膜材料的选择、改善膜材料表面与血液相容性的方法以及膜组件结构设计的方法;最后指出我国ECMO的发展现状,并对未来ECMO的发展方向进行了预测.

The development and application of extracorporeal membrane oxygenation (ECMO) provides the possibility for the treatment of critically ill patients. One of the main components of the ECMO device is the gas permeable membrane, which is a barrier that separates blood from the gas phase and can effectively and safely support the gas exchange process in blood. Since the 1950s, the development of ECMO technology has been committed to improving the safety and service life of membranes, which has led to the emergence of oxygenators that can provide extracorporeal life support for several weeks. For more than 60 years, the development of ECMO has undergone a series of evolutions in both the selection of membrane materials and the structural design of membrane modules. This article reviews the development process of ECMO technology, including the selection of membrane materials, methods to improve the compatibility of membrane materials with blood, and methods of membrane module structure design. Finally, the development status of China’s ECMO is pointed out and the development direction was predicted.

基金项目:
国家自然科学基金项目(21905008);北京市自然科学基金项目(2194071)

作者简介:
铁娟(1997-),女,宁夏人,本科,工学学士学位,从事电磁吸波方向研究,E-mail:18810599278@163.com

参考文献:
[1]Firstenberg M S, Stahel P F, Hanna J, et al. Successful COVID-19 rescue therapy by extra-corporeal membrane oxygenation (ECMO) for respiratory failure: a case report[J]. Patient Safety in Surgery, 2020, 14(1): 1-7.
[2]宋美君, 许兆军, 陈碧新,等. ECMO 治疗甲型H1N1流感病毒感染致ARDS的临床研究[J]. 中华医院感染学杂志, 2019, (4): 2.
[3]金爱华, 贾琳, 阎本永,等. 北京地区19例重症和危重症COVID-19患者临床分析[J]. 中华实验和临床病毒学杂志, 2020, 34(00): E002-E002.
[4]黄德群, 陈玉芳. 完美的仿生脏器—膜式人工肺[J]. 临床医学工程, 2005, (6): 56-56.
[5]Kurata M, Heat exchanger for artificial heart and lung devices. Google Patents: 1977.
[6]胡敏. 人工肺的膜材料:研究与应用[J]. 中国组织工程研究, 2012, 016(29): 5469-5476.
[7]Evseev A, Zhuravel S, Alentiev A Y, et al. Membranes in Extracorporeal Blood Oxygenation Technology[J]. Membranes and Membrane Technologies, 2019, 1(4): 201-211.
[8]Clowes Jr G. An artificial lung dependent upon diffusion of oxygen and carbon dioxide through plastic membrane[J]. J Thorac Surg, 1956, 32: 630-637.
[9]Lim M. The history of extracorporeal oxygenators[J]. Anaesthesia, 2006, 61(10): 984-995.
[10]Kolff W, Balzer R, CLEVELAND M. The artificial coil lung[J]. Asaio J, 1955, 1: 39-42.
[11]Clowes Jr G H, Neville W E. Further development of a blood oxygenator dependent upon the diffusion of gases through plastic membranes[J]. Asaio J, 1957, 3(1): 52-58.
[12]Robb W. Silicone membranes, their permeabilities and uses[J]. Ann. NY: Acad. Sci, 1968, (146): 119-137.
[13]Lequier L, Horton S B, McMullan D M, et al. Extracorporeal membrane oxygenation circuitry[J]. Pediatric critical care medicine, 2013, 14(5 0 1): S7.
[14]E Converse Peirce I, Dibelius N R. The membrane lung: studies with a new high permeability co-polymer membrane[J]. Asaio J, 1968, 14(1): 220-226.
[15]Tanishita K, Panol G, Richardson P D, et al. Gas transport in the intracorporeal oxygenator with woven tubes[J]. Artif Organs, 1994, 18(11): 797-800.
[16]Matsuda N, Sakai K. Blood flow and oxygen transfer rate of an outside blood flow membrane oxygenator[J]. J Membr Sci, 2000, 170(2): 153-158.
[17]Rajasubramanian S, Nelson K D, Shastri P, et al. Design of an oxygenator with enhanced gas transfer efficiency[J]. Asaio J, 1997, 43(5): M714.
[18]Kniazeva T, Hsiao J C, Charest J L, et al. A microfluidic respiratory assist device with high gas permeance for artificial lung applications[J]. Biomedical microdevices, 2011, 13(2): 315-323.
[19]Kniazeva T, Epshteyn A A, Hsiao J C, et al. Performance and scaling effects in a multilayer microfluidic extracorporeal lung oxygenation device[J]. Lab on a Chip, 2012, 12(9): 1686-1695.
[20]Bélanger M C, Marois Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review[J]. Journal of Biomedical Materials Research, 2001, 58(5): 467-477.
[21]McCaughan J S, Weeder R, Schuder J C, et al. Evaluation of new nonwettable macroporous membranes with high permeability coefficients for possible use in a membrane oxygenator[J]. The Journal of Thoracic and Cardiovascular Surgery, 1960, 40(5): 574-581.
[22]Kramer E, Materials science and technology: a comprehensive treatment. 1992.
[23]Kim J-J, Jang T-S, Kwon Y-D, et al. Structural study of microporous polypropylene hollow fiber membranes made by the melt-spinning and cold-stretching method[J]. J Membr Sci, 1994, 93(3): 209-215.
[24]Tamari Y, Tortolani A J, Maquine M, et al. The effect of high pressure on microporous membrane oxygenator failure[J]. Artif Organs, 1991, 15(1): 15-22.
[25]Montoya J P, Shanley C J, Merz S I, et al. Plasma leakage through microporous membranes. Role of phospholipids[J]. Asaio J, 1992, 38(3): 399-405.
[26]Kawahito S, Motomura T, Glueck J, et al. Development of a new hollow fiber silicone membrane oxygenator for ECMO: The recent progress[J]. Annals of thoracic and cardiovascular surgery, 2002, 8(5): 268-274.
[27]El’kin O V, Bushuev A N, Tolstobrov I V, et al. Fascinating Fluoropolymers and Their Applications[M]. Elsevier, 2020: 401.
[28]Belov N, Nikiforov R, Polunin E, et al. Gas permeation, diffusion, sorption and free volume of poly (2-trifluoromethyl-2-pentafluoroethyl-1, 3-perfluorodioxole)[J]. J Membr Sci, 2018, 565: 112-118.
[29]McKeen L W, Permeability properties of plastics and elastomers[M]. William Andrew, 2016: 465.
[30]https://global.medtronic.com/xg-en/healthcare professionals/products/cardiovascular/cardiopulmonary/affinity-fusion-oxygenation-system.html.
[31]https://global.medtronic.com/xg-en/healthcare-professionals/products/cardiovascular/cardiopulmonary/affinity-nt-cardiotomy-venous-reservoir.html.
[32]https://www.getinge.com/int/product-catalog/pls-system/.
[33]https://www.getinge.com/int/product-catalog/hls-set-advanced/.
[34]https://www.getinge.com/int/product-catalog/quadrox-i-adult-and-small-adult/.
[35]https://www.terumo-cvs.com/products/ProductDetail.aspx?groupId=1&familyID=1&country=1.
[36]https://www.livanova.com/en-GB/Home/Products-Therapies/Cardiovascular/Healthcare-Professionals/Advanced-Circulatory-Support/ExtraCorporeal-Life-Support/Eos-ECMO.aspx.
[37]https://www.xenios-ag.com/medos/products/hilite-oxygenators/.
[38]https://eurosets.team99.it/portfolio/alone/.
[39]https://www.nipro.co.jp/en/business/device/cardiopulmonary/oxygenator/.
[40]Ikada Y. Membranes as biomaterials[J]. Polym J, 1991, 23(5): 551-560.
[41]Teligui L, Dalmayrac E, Mabilleau G, et al. An ex vivo evaluation of blood coagulation and thromboresistance of two extracorporeal circuit coatings with reduced and full heparin dose[J]. Interactive cardiovascular and thoracic surgery, 2014, 18(6): 763-769.
[42]Liu Z-M, Xu Z-K, Wang J-Q, et al. Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone[J]. Eur Polym J, 2004, 40(9): 2077-2087.
[43]Kou R-Q, Xu Z-K, Deng H-T, et al. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allyl glucoside[J]. Langmuir, 2003, 19(17): 6869-6875.
[44]Wang W, Zheng Z, Huang X, et al. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification[J]. J Biomed Mater Res B, 2017, 105(7): 1737-1746.
[45]Wang Y-B, Gong M, Yang S, et al. Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane[J]. J Membr Sci, 2014, 452: 29-36.
[46]关勇, 李红伟, 刘淑琴,等. 轴流式磁悬浮人工心脏泵磁悬浮轴承系统设计[J]. 山东大学学报(工学版), 2011, 41(1): 151-155.
[47]刘耀东, 黄鑫, 王伟平,等. 聚砜中空纤维膜式人工肺的等离子体改性研究[J]. 膜科学与技术, 2015, (04): 39-43.
[48]吕权. 平板式聚砜膜的制备、表征、改性及其在膜式人工肺中的应用[D]. 南京:南京大学, 2013.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号