脱盐层结构对反渗透膜碳酸钙结垢的影响研究
作者:梁松苗,胡利杰,姚 艳
单位: 时代沃顿科技有限公司,贵阳 550018
关键词: 反渗透膜;碳酸钙垢;叶片结构; 表面特性
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2021,41(1):33-39

摘要:
碳酸钙是常见的无机盐结垢形式,其可能导致膜通量和运行寿命降低,是反渗透系统中亟需解决的关键问题之一。本文通过制备两种不同结构的反渗透膜,从碳酸钙的形核热力学和与膜的粘附作用出发,考察膜表面特性和表面结构对碳酸钙结垢的影响。结果表明,大叶结构反渗透膜的结垢程度更高,但垢易脱附,其对膜通量衰减率仅为1.52%;小叶结构反渗透膜的结垢程度低,但垢不易脱落,其对膜通量衰减率达9.77%。本研究为反渗透膜碳酸钙结垢的控制机制提供了基本见解,并提出膜表观结构的设计作为减少碳酸钙结垢策略的潜力。
Leading to reduce the flux and operation life of membranes, Calcium carbonate scales was considered to be one of key issues urgently to be solved in reverse osmosis (RO) systems. In this paper, based on the perspective of the nucleation thermodynamics of calcium carbonate and the adhesion to the membrane, the effects of characteristics on membrane surface scales were studied by preparing RO membrane with different structures. The results showed that RO membranes with large leaf structure had a higher degree of scaling but were easy to desorb, hence, the flux attenuation rate was only 1.52%; in the meanwhile, RO membranes with small leaf structure had a lower degree of scaling but were hard to desorb, hence, the flux attenuation rate was 9.77%. In a word, this research provided a preliminary understanding with the control mechanism of calcium carbonate scaling in reverse osmosis systems and pointed out that the design of membrane apparent structure was a key measure for reducing calcium carbonate scales.

基金项目:
国家重点研发计划项目(2017YFC0403900);国家重点研发计划项目(2016YFE0118800)

作者简介:
梁松苗(1977- )男,湖南涟源人,教授级高级工程师,主要从事水处理膜材料的研究与产业化,liangsongmiao@vontron.com

参考文献:
[1] Anna Lee, Elam, Jeffrey W., Darling, Seth B. Membrane materials for water purification: design, development, and application [J]. Environmental Science Water Research & Technology, 2016, 2(1): 17-42.
[2] 高从堦, 杨尚保. 反渗透复合膜技术进展和展望 [J]. 膜科学与技术, 2011, 31(3): 1-4.
[3] Asif Matin, Khan, Z., Zaidi, S. M. J., et al. Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention [J]. Desalination, 2011, 281(none): 1-16.
[4] Tiezheng Tong, Wallace, Adam F, Zhao, Song, et al. Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes [J]. Journal of Membrane Science, 2019, 579: 52-69.
[5] Alice Antony, Low, Jor How, Gray, Stephen, et al. Scale Formation and Control in High Pressure Membrane Water Treatment Systems: A Review [J]. Journal of Membrane Science, 2011, 383(1): 1-16.
[6] David M. Warsinger, Swaminathan, Jaichander, Guillen-Burrieza, Elena, et al. Scaling and fouling in membrane distillation for desalination applications: A review [J]. Desalination, 2015, 356: 294-313.
[7] Sangho Lee, Lee, Chunghak. EFFECT OF OPERATING CONDITIONS ON CaSO4 SCALE FORMATION MECHANISM IN NANOFILTRATION FOR WATER SOFTENING [J]. Water Research, 2000, 34(15): 3854-3866.
[8] Nam Wook Kang, Lee, Seockheon, Kim, Dooil, et al. Analyses of calcium carbonate scale deposition on four RO membranes under a seawater desalination condition [J]. Water Science and Technology, 2011, 64(8): 1573-1580.
[9] Junjie Zhao, Wang, Minghui, Lababidi, Haitham M S, et al. A review of heterogeneous nucleation of calcium carbonate and control strategies for scale formation in multi-stage flash (MSF) desalination plants [J]. Desalination, 2018, 442: 75-88.
[10] C H Tzotzi, Pahiadaki, T, Yiantsios, S G, et al. A study of CaCO3 scale formation and inhibition in RO and NF membrane processes [J]. Journal of Membrane Science, 2007, 296(1): 171-84.
[11] 刘立芬, 俞三传, 高从堦. 反渗透复合膜耐污染性研究进展 [J]. 膜科学与技术, 2005, 5: 72-75.
[12] 《反渗透净水机水效限定值和水效等级》国家标准发布 [J]. 日用电器, 2017,
[13] Mahendra Kumar, Mcglade, Declan, Lawler, Jenny. Functionalized chitosan derived novel positively charged organic–inorganic hybrid ultrafiltration membranes for protein separation [J]. Rsc Advances, 2014, 4(42): 21699-21711.
[14] Erdal Eren, Sarihan, Adem, Eren, Bilge, et al. Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier [J]. Journal of Membrane Science, 2015, 475:1-8.
[15] Hashmi, Sara, M., et al. Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties [J]. Environmental Science & Technology Es & T, 2017,
[16] Markus F?rster, Bohnet, Matthias. Influence of the interfacial free energy crystal/heat transfer surface on the induction period during fouling [J]. 1999, 38(11): 944-954.
[17] Jonathan A. Brant, Childress, Amy E. Assessing short-range membrane–colloid interactions using surface energetics [J]. 2002, 203(1-2): 257-273.
[18] C. J. Van Oss. Acid—base interfacial interactions in aqueous media [J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1993, 78: 1-49.
[19] Lucyna Holysz, Chibowski, Emil. Surface Free Energy Components of Calcium Carbonate and Their Changes Due to Radiofrequency Electric Field Treatment [J]. Journal of Colloid & Interface Science, 1994, 164(1): 245-51.
[20] Hiroshi Yamamura, Chae, Soryong, Kimura, Katsuki, et al. Transition in fouling mechanism in microfiltration of a surface water [J]. Water Research, 2007, 41(17): 3812-3822.
[21] Takashi Kamada, Ohara, Tomomi, Shintani, Takuji, et al. Optimizing the preparation of multi-layered polyamide membrane via the addition of a co-solvent [J]. Journal of Membrane Science, 2014, 453:489-497.
[22] Takashi Kamada, Ohara, Tomomi, Shintani, Takuji, et al. Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux [J]. Journal of Membrane Science, 2014, 467: 303-312.
[23] Lianrui Zhao, Liang, Songmiao, Jin, Yan, et al. Effect of trifunctional planar monomer on the structure and properties of polyamide membranes [J]. Applied Surface Ence, 505: 1-30.
[24] Clifford Y. Tai, Chen, Pao Chi. Nucleation, Agglomeration and Crystal Morphology of Calcium Carbonate [J]. Aiche Journal, 1995, 41(1): 68-77.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号