一种耐细菌粘附纳滤膜的制备及其性能研究 |
作者:王 希,江志彬,洪鑫军,何远涛,陈顺权,苗 晶 |
单位: 1.广东膜材料和膜分离省重点实验室,广州中国科学院先进技术研究所,广州 511458;2.中化(宁波)润沃膜科技有限公司,浙江宁波,315700;3.华南师范大学化学学院,广州,510006 |
关键词: 羧甲基壳聚糖,氧化石墨烯,聚酰胺,金黄色葡萄球菌,抗细菌粘附污染 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2021,41(1):64-72 |
摘要: |
羧甲基壳聚糖(NOCC)和均苯三甲酰氯(TMC)作为水相和油相材料,经界面聚合制得的聚酰胺复合纳滤膜,通量较低、抗细菌粘附污染性能较差。本工作中,在羧甲基壳聚糖水相溶液中加入氧化石墨烯(GO),采用界面聚合方法制备了高截留率、具有较好抗细菌粘附污染性能的荷负电氧化石墨烯-聚酰胺/聚砜(GO-PA/PSF)有机/无机杂化复合纳滤膜。采用扫描电子显微镜(SEM)、傅里叶变换衰减全反射红外光谱(ATR-FTIR)、原子力显微镜(AFM)、接触角(CA)、及表面Zeta电位等对该膜的形貌、物理化学性质进行了表征,并对结果进行了分析。考察和讨论了GO-PA/PSF有机/无机杂化复合纳滤膜的通量、截留率、以及对金黄色葡萄球菌的抗粘附污染性能。研究结果表明,适量的GO加入能够有效地提高聚酰胺纳滤膜的分离性能和对金黄色葡萄球菌的抗粘附污染性能。 |
The polyamide composite nanofiltration membranes were developed using N, O-carboxymethyl chitosan (NOCC) and trimethyl chloride (TMC) as the materials of the oil phase and aqueous phase, respectively. The resultant NF membranes showed relatively low permeate fluxes, and it was easy for the bacteria to be attached to the membrane surface. In this work, a negatively charged polyamide-graphene oxide (GO) composite NF membranes were fabricated through the addition of GO into the NOCC aqueous solution, i.e. the aqueous phase. The resultant GO-PA/PSF hybrid composite NF membranes showed higher rejections, better antimicrobial and antifouling capabilities. The morphologies, physical and chemical characteristics of the resultant composite NF membranes were characterized with scanning electronic microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), atomic force microscopy (AFM), contact angle, and Zeta potential. The rejection performances and the antimicrobial and antifouling capabilities to Staphylococcus aureus were investigated symmetrically. It suggested that the addition of a certain amount of GO in the aqueous phase could effectively improve the rejection performances, antimicrobial and antifouling capabilities. |
基金项目: |
广东省产学研合作项目(2016B090918048)、质量评价导向的特种膜中药绿色制造技术及其专属装备集成研究(2019YFC1711300),中国科学院科技服务网络计划(STS计划)区域重点项目(KFJ-STS-QYZX-043) |
作者简介: |
王希(1987.7-),女,黑龙江哈尔滨,工程师,硕士研究生,研究方向:膜材料改性,E-mail:xi.wang@giat.ac.cn;江志彬(1992.7-),男,广东梅州,博士研究生,研究方向:纳滤膜分离材料、锂电池隔膜材料,E-mail:2018010147@m.scnu.edu.cn; |
参考文献: |
[1] Liu T Y, Bian L X, Yuan H G, et al. Fabrication of a high-flux thin film composite hollow fiber nanofiltration membrane for wastewater treatment[J]. J Membrane Sci, 2015, 478:25-36. [2] Zhu J, Guo N, Zhang Y, et al. Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP[J]. J Membrane Sci, 2014, 465:91-99. [3] Zhang Z, Wei W. Positively charged hollow-fiber composite nanofiltration membrane prepared by quaternization crosslinking[J]. J Appl Polym Sci, 2013, 129(5) 2806-2812. [4] 姜雨薇, 冉艳红. 纳滤膜技术在废水处理中的应用与发展趋势[J]. 现代化工. 2011, 31(2):25-28. [5] 毕 飞, 陈欢林, 高从堦. 纳滤膜去除饮用水中微量有机物的研究进展[J]. 现代化工. 2011, 31(7):21-28. [6] Wang J, Gao X, Wang J, et al. O-(Carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties[J]. ACS Appl Mater Interfaces, 2015, 7(7):4381-4389. [7] 李红宾, 石文英, 朱红英, 等. 耐污染性复合纳滤膜制备技术研究进展[J]. 水处理技术. 2016, 042(006):1-7. [8] 刘 兴, 邓慧宇, 段龙繁, 等. 抗污染高分子纳滤膜研究进展[J]. 膜科学与技术. 2018, 38(05):118-126. [9] Wu M B, Lv Y, Yang H C, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. J Membrane Sci, 2016, 515: 238-244. [10] Akbari A, Homayoonfal M. Sulfonation and mixing with TiO2 nanoparticles as two simultaneous solutions for reducing fouling of polysulfone loose nanofiltration membrane[J]. Korean J Chem Eng, 2016, 33(8):2439-2452. [11] Lee K P, Zheng J, Bargeman G, et al. pH stable thin film composite polyamine nanofiltration membranes by interfacial polymerisation[J]. J Membrane Sci, 2015, 478:75-84. [12] Li M, Lv Z, Zheng J, et al. Positively charged nanofiltration membrane with dendritic surface for toxic element removal[J]. ACS Sustain Chem Eng, 2017, 5(1): 784-792. [13] 孙海静, 高学理, 王 剑, 等. 抗污染抑菌性聚酰胺纳滤膜的制备及性能表征[J]. 中国海洋大学学报:自然科学版 2017, (5). [14] Kirschner C M, Brennan A B. Bio-Inspired Antifouling Strategies[J]. Annu Rev Mater Sci, 2012, 42(1):211-229. [15] 江志彬, 何远涛, 陈 琪, 等. 功能性有机/无机杂化纳滤膜的研究进展[J]. 膜科学与技术. 2018, 038(2):125-131. [16] Lee S Y, Kim H J, Patel R, et al. Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties[J]. Polym Adv Technol, 2010, 18(7):562-568. [17] Maheswari, P, Prasannadevi, et al. Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes[J]. High Perform Polym, 2013, 25(5): 174-187. [18] Liu X, Qi S, Li Y, et al. Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly[J]. Environ Sci Technol, 2013, 47(9):3081-3092. [19] Ji J, Zhang W. Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds[J]. J Biomed Mater Res A, 2008, 88A(2):448-453. [20] Sin M C, Sun Y M, Chang Y. Zwitterionic-Based Stainless Steel with Well-Defined Polysulfobetaine Brushes for General Bioadhesive Control[J]. ACS Appl Mater Interfaces, 2014, 6(2):861-873. [21] Zhang X, Zhang Q, Yan T, et al. Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method[J]. Environ Sci Technol, 2015, 49(10):6164-6171. [22] Graham M V, Mosier A P, Kiehl T R, et al. Development of antifouling surfaces to reduce bacterial attachment[J]. Soft Matter, 2013, 9(27):6235. [23] Zhao W, Walker S L, Huang Q, et al. Adhesion of bacterial pathogens to soil colloidal particles: Influences of cell type, natural organic matter, and solution chemistry[J]. Water Res, 2014, 53:35-46. [24] Hamadi F, Latrache H, Mabrrouki M, et al. Effect of pH on distribution and adhesion of Staphylococcus aureus to glass[J]. Journal of Adhes Sci Technol, 2005, 19(1):73-85. [25] Vrushali W, Chu E, Roxana S, et al. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting[J]. Pharmaceut Res, 2014, 31(1):160. [26] Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano 2010, 4(7):4317-4323. [27] 邵文尧, 闫梦文, 谢全灵. 氧化石墨烯抗菌机理研究进展[J]. 化工技术与开发 2016, 45(010):32-36. [28] Akhavan O, Ghaderi E, Esfandiar A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation[J]. J Phys Chem B 2011, 115(19):6279-6288. [29] Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano 2010, 4(10):5731-5736. [30] Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nat Nanotechnol 2013, 8(8): 594-601. [31] Zhang Y, Ali S F, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. Acs Nano 2010, 4(6):3181-3186. [32] Liu X, Chen KL. Interactions of Graphene Oxide with Model Cell Membranes: Probing Nanoparticle Attachment and Lipid Bilayer Disruption[J]. Langmuir 2015, 31(44):12076-12086. [33] Abadikhah H, Naderi Kalali E, Khodi S, et al. Multifunctional Thin-film nanofiltration membrane incorporated with reduced graphene oxide@TiO2@Ag nanocomposites for high desalination performance, dye retention, and antibacterial properties[J]. ACS Appl Mater Inter 2019, 11(26):23535-23545. [34] Zhu J, Wang J, Uliana A A, et al. Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide-copper nanocomposites[J]. ACS Appl Mater Inter 2017, 9(34):28990-29001. [35] Fang W, Shi L, Wang R. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability[J]. J Membrane Sci, 2014, 468:52-61. [36] Zhao F, Ji Y, Weng X D, et al. High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes[J]. ACS Appl Mater Interfaces, 2016, 8(10):6693. [37] Baruah K, Hazarika S. Separation of acetic acid from dilute aqueous solution by nanofiltration membrane[J]. J Appl Polym Sci, 2014, 131(15): 40537. [38] Misdan N, Lau W J, Ismail A F. Physicochemical characteristics of poly(piperazine-amide) TFC nanofiltration membrane prepared at various reaction times and its relation to the performance[J]. J Polym Eng, 2015, 35(1):71-78. [39] Liu F, Ma B R, Zhou D, et al. Positively charged loose nanofiltration membrane grafted by diallyl dimethyl ammonium chloride (DADMAC) via UV for salt and dye removal[J]. React Funct Polym, 2015, 86:191-198. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号