多巴胺氧化聚合膜表面改性技术研究进展 |
作者:田欣欣,王 暄,彭 维,吕晓龙,于 越,袁晓彤 |
单位: 分离膜与膜过程国家重点实验室,天津工业大学 环境科学与工程学院,天津 300387 |
关键词: 多巴胺自聚合;膜表面改性;氧化剂;膜生物膜反应器 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2021,41(1):152-159 |
摘要: |
近年来,以多巴胺(Dopamine,DOPA)为代表的仿生贻贝物质因其在膜表面改性过程中的简易性、普适性及良好的后功能化潜力在复合膜制备领域备受关注,其在有氧的弱碱性水溶液中能够自聚合生成聚多巴胺(Polydopamine,PDA),但存在自聚合缓慢等问题,加入氧化剂可显著提高自聚合速率。本文重点综述了过硫酸铵、高碘酸钠等氧化剂对于多巴胺自聚合过程、以及复合膜PDA聚合层稳定性、耐污染性能等的影响,并简要介绍了多巴胺氧化自聚合膜表面改性技术在膜生物膜反应器(Membrane biofilm reactor,MBfR)领域中的研究现状,通过多巴胺氧化自聚合膜表面改性技术有望获得具有良好的氧传质性能,生物亲和性以及耐污染性能的复合膜,在MBfR领域具有良好的应用前景。 |
Dopamine (DOPA), as the typical biomimetic mussel material, has attracted much attention in the field of composite membrane preparation due to its simplicity, universality and good post functionalization potential in the process of membrane surface modification in recent years. Dopamine can generate polydopamine(PDA) through self-polymerization in weakly alkaline aqueous solution, but the self-polymerization is usually a slow process, and the rate of self-polymerization can be increased by adding oxidant. In this paper, the influence of oxidants addition(such as ammonium persulfate, sodium periodate and other oxidants) on dopamine polymerization process, PDA stability and antifouling performance of the composite membrane is mainly reviewed. Furthermore, membrane surface modification technology of dopamine polymerization in membrane biofilm reactor(MBfR) system is also discussed, the composite membrane obtained by dopamine polymerization modification is expected to obtain excellent oxygen mass transfer performance, biological affinity and antifouling properties, and has good application prospect in the field of MBfR. |
基金项目: |
国家自然科学基金(51408415) |
作者简介: |
田欣欣(1996-),女,河北省邢台市人,硕士研究生,从事膜表面改性及MBfR应用研究,E-mail:txx9652@163.com. |
参考文献: |
[1] 徐又一, 蒋金泓, 朱利平,等. 多巴胺的自聚合-附着行为与膜表面功能化[J]. 膜科学与技术, 2011, 31(3):32-38. [2] Zhang C, Ou Y, Lei W X et al. CuSO4/H2O2‐Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability[J]. Angew. Chem. Int. Ed, 2016, 55(9):3054. [3] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426-432. [4] Le M L, Zhou Y, Byun J, et al. Using A Spin-Coater to Capture Adhesive Species during Polydopamine Thin-Film Fabrication[J]. Langmuir, 2019, 35(39):12722-12730. [5] 贺武, 帅韬, 高明阳,等. 聚多巴胺形成的机理及影响因素[J]. 江西化工, 2017(4):4-10. [6] Faure E, Céline Falentin-Daudré, Christine Jérôme, et al. Catechols as versatile platforms in polymer chemistry[J]. Prog in Polym Sci, 2013, 38(1):236–270. [7] 张培斌, 唐安琪, 路景驭,等. 基于贻贝仿生化学的分离功能材料[J]. 功能高分子学报, 2017, 030(1):1-14 [8] Jeon Y S, Bui Q T, An J H, et al. Oxidative Gelation of Dopamine-modified Polyaspartamides by NaIO4[J]. Polymer Korea, 2014, 38(1):108-112. [9] Du X, Li L X, Li J S, et al. UV-Triggered Dopamine Polymerization: Control of Polymerization, Surface Coating, and Photopatterning[J]. Adv. Mater, 2014, 26(47):8029-8033. [10] Kang K, Lee S, Kim R, et al. Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces.[J]. Angew. Chem. Int. Ed, 2012, 51(52):13101-13104. [11] Kim H W, Mccloskey B D, Choi T H, et al. Oxygen Concentration Control of Dopamine-Induced High Uniformity Surface Coating Chemistry[J]. ACS Applied Materials & Interfaces, 2013, 5(2):233-238. [12] Xie T, Yang Q, Winkler M K H, et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: Performance and microbial community structure[J]. J Hazard Mater, 2018, 357:244-252. [13] Ryu J H, Messersmith P B, Lee H. Polydopamine Surface Chemistry: A Decade of Discovery.[J]. Acs Appl Mater Interfaces, 2018, 10(9): 7523-7540. [14] Xi Z Y, Xu Y Y, Zhu L P, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)[J]. J of Membr Sci, 2009, 327(1):244-253. [15] Zhang C, Li H N, Du Y, et al. CuSO4/H2O2 Triggered Polydopamine/Poly(sulfobetaine methacrylate)Coatings for Antifouling Membrane Surfaces[J]. Langmuir, 2017, 33(5):1210-1216. [16] Wang J, Li B, Li Z, et al. Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents[J]. Biomaterials, 2014, 35(27): 7679-7689. [17] Li Y, Liu M, Xiang C, et al. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions[J]. Thin Solid Films, 2006, 497(1-2):270-278. [18] Yang H C, Luo J, Lv Y, et al. Surface engineering of polymer membranes via mussel-inspired chemistry[J]. J of Membr Sci, 2015, 483:42-59. [19] 程毅丽, 康国栋, 贾静璇,等. 聚四氟乙烯中空纤维膜的多巴胺自聚表面改性及性能研究[J]. 高校化学工程学报, 2015, 29(5):1259-1264. [20] Tan Y, Deng W, Li Y, et al. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.[J]. J Phys Chem B, 2010, 114(15):5016-5024. [21] Tahroudi Z M, Razmjou A, Bagherian M, et al. Polydopamine surface modification with UV-shielding effect using KMnO4 as an efficient oxidizing agent[J]. Colloids Surf., A: Physicochemical and Engineering Aspects, 2018, 559: 68-73. [22] Riley P A. Radicals in melanin biochemistry[J]. Ann N Y Acad Sci, 1988, 551(11):1-120 [23] Ball V, Gracio J J D A, Mercèdes Vila, et al. Comparison of Synthetic Dopamine-Eumelanin Formed in the Presence of Oxygen and Cu2+ Cations as Oxidants[J]. Langmuir, 2013, 29(41):12754-12761. [24] Bernsmann F, Ball V, Addiego F, et al. Dopamine-Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution[J]. Langmuir, 2011, 27(6):2819-2825. [25] Kang X, Cai W, Zhang S, et al. Revealing the formation mechanism of insoluble polydopamine by using a simplified model system[J]. Polymer Chemistry, 2017, 8(5):860-864. [26] Qiang W, Zhang F, Jie L, et al. Oxidant-induced dopamine polymerization for multifunctional coatings[J]. Polymer Chemistry, 2010, 1(9):1430-1433. [27] 岳鑫业, 刘文超, 周勇,等. 聚酰胺反渗透复合膜的多巴胺改性研究[J]. 水处理技术, 2014(4):31-34. [28] Wang J, Guo H, Shi X, et al. Fast polydopamine coating on reverse osmosis membrane: Process investigation and membrane performance study[J]. J Colloid Interface Sci, 2019, 535:239-244. [29] Hong S H, Hong S, Ryou M H, et al. Sprayable Ultrafast Polydopamine Surface Modifications[J]. Advanced Materials Interfaces, 2016, 3(11):1500857. [30] 袁晓彤, 郭东岳, 王暄,等. 氧化剂高碘酸钠诱发多巴胺自聚合在MBfR膜表面改性中的应用[J]. 膜科学与技术, 2017(05):39-44. [31] 于越. 改性疏水性PVDF中空纤维膜在MBfR中应用及生物膜特性研究[D]. 天津: 天津工业大学, 2019. [32] Wei H, Ren J, Han B, et al. Stability of polydopamine and poly (DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions[J]. Colloids Surf., B: Biointerfaces, 2013, 110: 22-28. [33] Li R, Liu J, Shi A, et al. A facile method to modify polypropylene membrane by polydopamine coating via inkjet printing technique for superior performance[J]. J Colloid Interface Sci, 2019, 552:719-727. [34] Ponzio F, Barthes J, Bour J, et al. Oxidant Control of Polydopamine Surface Chemistry in Acids: a Mechanism-Based Entry to Superhydrophilic-Superoleophobic Coatings.[J]. Chem Mater, 2016, 28(13):4697-4705. [35] Ahmed T, et al. Use of sealed hollow fibers for bubble less membrane aeration: experimental studies[J]. J of Membr Sci, 1992, 69(1-2):1-10. [36] 樊金鹏, 田海龙, 李保安,等. MABR及其在工业废水处理方面的应用[J]. 化学工业与工程, 2019, 36(01):63-67. [37] Casey E, Glennon B, Hamer G, et al. Review of membrane aerated biofilm reactors[J]. Resources Conservation & Recycling, 1999, 27(1–2):203-215. [38] Morón-López J, Nieto-Reyes L, Aguado S, et al. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability[J]. Chemosphere, 2019, 231:103-112. [39] Martin K J, Nerenberg R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments[J]. Bioresour Technol, 2012, 122: 83-94. [40] Muchtar S, Wahab M Y, Mulyati S, et al. Superior fouling resistant PVDF membrane with enhanced filtration performance fabricated by combined blending and the self-polymerization approach of dopamine[J]. Journal of Water Process Engineering, 2019, 28: 293-299. [41] Yang H C, Waldman R Z, Wu M B, et al. Dopamine: just the right medicine for membranes[J]. Adv Funct Mater, 2018, 28(8): 1705327. [42] Panzella L, Pezzella A, Arzillo M, et al. A novel fluoride-sensing scaffold by a peculiar acid-promoted trimerization of 5,6-dihydroxyindole[J]. Tetrahedron, 2009, 65(10):2032-2036. [43] 邢明皓. 表面改性制备MABR用中空纤维膜[D]. 天津: 天津大学, 2012. [44] 张利娟, 袁晓彤, 王暄,等. MBfR中PVDF/pDOPA改性膜耐污染性能研究[J]. 水处理技术, 2016(8):61-64. [45] 郭东岳, 于越, 王暄,等. MBfR中改性PVDF疏水中空纤维膜表面微生物附着生长特性研究[J]. 膜科学与技术, 2018(4):56-63. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号