改性水滑石复合纳滤膜的制备及染料/盐分离性能研究
作者:田 陈,朱利苹,冯孝权,单美霞,张亚涛
单位: 1郑州大学化工学院,河南郑州450001; 2郑州市先进分离技术重点实验室,河南郑州450001
关键词: 改性水滑石;复合纳滤膜;染料截留;脱盐
DOI号:
分类号: TQ051.893
出版年,卷(期):页码: 2021,41(2):33-40

摘要:
 纳滤膜在水处理领域应用广泛,但传统纳滤膜无法分离多价盐染料溶液。因此在传统纳滤膜的基础上,开发可分离多价离子与染料的新型复合纳滤膜,已成膜分离领域研究的热点之一。本文通过低饱和共沉淀法制备水滑石(LDH),采用反向原子转移自由基聚合(RATRP)法在水滑石片层表面接枝聚对苯乙烯磺酸钠(PSS),制备改性水滑石(LDH-PSS),最后采用层层自组装法制备LDH/LDH-PSS复合纳滤膜,并研究复合纳滤膜对染料与二价盐的分离效果以及不同添加量和LDH/LDH-PSS层数对其性能的影响。分析复合纳滤膜对一价盐、二价盐以及活性黑的截留性能和膜的纯水渗透率,研究复合纳滤膜的分离性能。结果表明:复合纳滤膜的纯水渗透率随着水滑石和改性水滑石层数的增加而降低,复合纳滤膜的纯水渗透率最高达到14.5 L/(m2?h?bar)。复合纳滤膜对活性黑5的截留率可达到96.7%,且对二价无机盐硫酸镁的截留率低至20%以下。
 The hydrotalcite (LDH) was prepared by low saturated coprecipitation. Sodium p-styrene sulfonate (PSS) was then grafted onto the surface of hydrotalcite lamella by reverse atomic transfer radical polymerization (RATRP) to prepare LDH-PSS. Finally, LDH/LDH-PSS composite membranes were prepared by self-assembly method. The separation performance of dye and divalent salt of the prepared composite membrane was studied and the effect of the addition amount and layers of LDH/LDH-PSS on the membrane separation performance was further investigated. The rejection of monovalent salt, divalent salt and reactive black 5 and the pure water permeability of the composite membrane were analyzed to study the separation performance of the composite membrane. The results show that the pure water permeability of the composite membrane decreases as the number of hydrotalcite and modified hydrotalcite layers increases, the pure water flux of the membrane is 14.5 L/(m2·h·bar), the rejection rate of the membrane to reactive dye reaches over 96.7%, and the rejection of divalent inorganic salt magnesium sulfate is below 20%.

基金项目:
国家自然科学基金项目(U1704139)

作者简介:
田陈(1994-03-14),男,河南商丘人,硕士研究生,从事膜分离技术的研究。 E-mail:1690899743@qq.com。

参考文献:
 [1] 董应超, 马丽宁, 等. 碳纳米管复合膜的制备及水处理应用研究进展[J]. 膜科学与技术, 2016, 36(6): 1-10. 
[2] Bouazizi N, Bargougui R, Thebault P, et al. Development of a novel functional core-shell-shell nanoparticles: From design to anti-bacterial applications[J]. Journal of Colloid and Interface Science, 2018, 513: 726-735. 
[3] 徐小颖, 曹兵, 等. PVA/PES复合膜的制备及其渗透汽化脱盐性能研究[J]. 北京化工大学学报: 自然科学版, 2016, 43(5): 39-44. 
[4] Ou W, Zhang G, Yuan X, et al. Experimental study on coupling photocatalytic oxidation process and membrane separation for the reuse of dye wastewater[J]. Journal of Water Process Engineering, 2015, 6: 120-128. 
[5] Peng Y, Yu Z, Pan Y, et al. Antibacterial photocatalytic self-cleaning poly(vinylidene fluoride) membrane for dye wastewater treatment[J]. Polymers for Advanced Technologies, 2018, 29: 254-262.
[6] Cotillas S, Llanos J, Pablo Cañizares, et al. Removal of procion red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation[J]. Electrochimica Acta, 2018, 263: 1-7.
[7] Li N, Wei D, Sun Q, et al. Fluorescent component and complexation mechanism of extracellular polymeric substances during dye wastewater biotreatment by anaerobic granular sludge[J]. Royal Society Open Science, 2018, 5: 171445-171445.
[8] 严海琳, 汤雯雯, 等. 镁盐和亚铁盐处理活性染料废水的实验研究[J]. 南京师大学报(自然科学版), 2010, 33(4): 39-44. 
[9] Chen X, Zhao Y, Moutinho J, et al. Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes[J]. Journal of Hazardous Materials, 2015, 284: 72-74. 
[10] Yu L, Deng J, Wang H, et al. Improved salts transportation of a positively charged loose nanofiltration membrane by introduction of poly(ionic liquid) functionalized hydrotalcite nanosheets[J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 3292-3304. 
[11] Lau W J, Ismail A F. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control — a review[J]. Desalination, 2009, 245: 321-348. 
[12] Zhang R, Ji S, Wang N, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal–organic framework hybrid membranes†[J]. Angewandte Chemie, 2014, 53: 9775-9779. 
[13] Abels C, Carstensen F, Wessling M. Membrane processes in biorefinery applications[J]. Journal of Membrane Science, 2013, 444: 285-317. 
[14] 刘垚, 吕陈美, 朱玲. 沸石分子筛膜合成的新方法[J]. 膜科学与技术, 2020, 40(3): 145-150.
[15] Aydiner C, Mert B K, et al. Novel hybrid treatments of textile wastewater by membrane oxidation reactor: Performance investigations, optimizations and efficiency comparisons[J]. Science of the Total Environment, 2019, 683: 411–426.
[16] Abid M F, Zablouk M, Abidalameer A M, et al. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration[J]. Iranian Journal of Environmental Health Science & Engineering, 2012, 9: 17-17.
[17] Paul M, Jons S D. Chemistry and fabrication of polymeric nanofiltration membranes: a review[J]. Polymer, 2016, 103: 417-456.
[18] Zhang Z, Kang G, Yu H, et al. Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group[J]. Journal of Membrane Science, 2019, 570-571: 403-409. 
[19] Lin J, Ye W, Zeng H, et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes[J]. Journal of Membrane Science, 2015, 477: 183-193.
[20] Lin J, Tang C Y, Ye W, et al. Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment[J]. Journal of Membrane Science, 2015, 493: 690-702.
[21] Dhar J, Patil S. Self-assembly and catalytic activity of metal nanoparticles immobilized in polymer membrane prepared via layer-by-layer approach[J]. ACS Applied Materials & Interfaces, 2012, 4: 1803-1812.
[22] Zhu C, Liu P, Mathew A P, et al. Self-assembled TEMPO cellulose nanofibers: Graphene oxide-based biohybrids for water purification[J]. ACS Applied Materials & Interfaces, 2017, 9: 21048-21058. 
[23] Rives V, Arco M D, Martin C, et al. Intercalation of drugs in layered double hydroxides and their controlled release: A review[J]. Applied Clay Science, 2014, 88: 239-269.
[24] Srivastava V. Functionalized hydrotalcite tethered ruthenium catalyst for carbon sequestration reaction[J]. Catalysis Letters, 2018, 148: 1879-1892.
[25] Pan L, Huang H, Niederberger M, et al. Layered cobalt hydrotalcite as an advanced lithium-ion anode material with high capacity and rate capability[J]. Journal of Materials Chemistry, 2019, 7: 21264-21269. 
[26] Velu S, Shah N, Jyothi T M, et al. Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides[J]. Microporous and Mesoporous Materials, 1999, 33: 61-75. 
[27] Arcanjo G S, Mounteer A H, Bellato C R, et al. Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV–visible irradiation for color and toxicity reduction in secondary textile mill effluent[J]. Journal of Environmental Management, 2018, 211: 154-163. 
[28] Wu X, Luo B, Chen F, et al. Heterogeneous fenton degradation of azo dye 4BS over Co–Mn–Fe ternary hydrotalcites[J]. Chemical Papers, 2018, 72: 2433-2441. 
[29] Gaini L E, Lakraimi M, Sebbar E, et al. Removal of indigo carmine dye from water to Mg-Al-CO3-calcined layered double hydroxides[J]. Journal of Hazardous Materials, 2009, 161: 627-632.
[30] 朱军峰, 拓欢, 朱婷, 等. 含磺酸基和氮氧自由基共聚合物的合成及性能研究[J]. 功能材料, 2020, 3(51): 03096-03101.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号