基于石墨烯量子点TFN膜的制备与性能 |
作者:欧阳果仔,李新冬,张鑫,袁佳彬,李海柯,李浪,李文豪,钟招煌,黄万抚 |
单位: 1江西理工大学赣州市赣江流域水质安全保障技术创新中心,江西 赣州 341000; 2江西理工大学赣州市流域污染模拟与控制重点实验室,江西 赣州 341000 |
关键词: 石墨烯量子点;TFN;界面聚合;纳滤;修饰 |
DOI号: |
分类号: TQ052;X799.3 |
出版年,卷(期):页码: 2021,41(2):41-50 |
摘要: |
利用哌嗪(PIP)与均苯三甲酰氯(TMC)的界面聚合反应将石墨烯量子点(GQDs)作为水相添加剂掺入到纳滤膜分离皮层中构成薄层纳米复合(TFN)膜,并采用傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、Zeta电位、水接触角等手段进行了表征分析。研究发现即使水相中加入的GQDs含量较低,但GQDs-PA-TFN膜的表面结构、荷负电性和亲水性能均得到了有效地改善。同时为了保证GQDs-PA-TFN膜对小分子物质的高效截留,在不牺牲膜渗透通量的情况下进行了二次界面聚合反应。当GQDs添加量为0.003 wt%,在实验得到的最佳反应条件下制备的GQDs-PA-TFN膜在0.6 MPa压力下渗透通量为36.9 L/m2•h,是未添加GQDs的TFC膜的1.4倍,对MgSO4的截留率为95.8 %。 |
Graphene quantum dots (GQDs) was incorporated into the separation functional layer as an aqueous additive by interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) to preparation TFN membrane. The samples were characterized by fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Zeta potential and water contact angle. It was found that the surface structure, electronegativity and hydrophilicity of the GQDs-PA-TFN membrane were effectively improved even though the content of GQDs in the aqueous phase was low. At the same time, in order to ensure the efficient interception of small molecules by GQDs-PA-TFN membrane, the secondary interfacial polymerization reaction was carried out without sacrificing the flux of the TFN membrane. With the addition of GQDs at 0.003 wt%, the permeation of the GQDs-PA-TFN membrane prepared under the optimal reaction conditions obtained by the experiment reached 36.9 L/m2•h under the pressure of 0.6 MPa, which was 1.4 times that of the TFC membrane without GQDs, and the rejection of MgSO4 was 95.8%. |
基金项目: |
江西省教育厅科技项目(GJJ160619);国家级大学生创新创业训练项目(201910407009);江西省研究生创新专项资金项目(YC2020-S456) |
作者简介: |
欧阳果仔(1995-),男,江西吉安,硕士生,膜法水处理技术,E-mail: oy08192571@163.com |
参考文献: |
[1] 张翔, 王继文, 赵相山, 等. 国产纳滤膜用于苦咸水脱盐制备饮用水[J]. 膜科学与技术, 2020, 40(04): 87-91. [2] 李新冬, 代武川, 袁佳彬, 等. 纳滤膜分离技术处理饮用水研究进展[J]. 应用化工, 2018, 47(08): 1767-1771. [3] Esfahani M R, Aktij S A, Dabaghian Z, et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications[J]. Separation and Purification Technology, 2019, 213(15): 465-499. [4] 欧阳果仔, 李新冬, 包亚晴, 等. 膜分离技术处理离子型稀土冶炼废水研究进展[J]. 现代化工, 2020, 40(08): 26-30. [5] Nasir A, Masood F, Yasin T, et al. Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 79(25): 29-40 [6] 邵国华, 刘艳军, 雍骏. 纳滤膜处理脱硫废水近零排放资源化实验研究[J]. 膜科学与技术, 2019, 39(06): 124-128. [7] Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches[J]. Water Research, 2015, 80(1): 306-324. [8] Ji Y, Qian W, Yu Y, et al. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1639-1652. [9] Kang Y, Obaid M, Jang J, et al. Sulfonated graphene oxide incorporated thin film nanocomposite nanofiltration membrane to enhance permeation and antifouling properties[J]. Desalination, 2019, 470(15): 114-125. [10] Li X D, Ouyang G Z, Tian T T, et al. Adsorption and Rejection of PAEs by Modified Nanofiltration Membrane[J]. Journal of Engineering Science and Technology Review, 2020, 13(1), 42–49. [11] 贾旭超, 王磊, 张慧慧, 等. GO/PAN复合正渗透膜制备的影响因素及性能分析[J]. 环境工程学报, 2019, 13(02): 282-290. [12] Li C, Li S, Tian L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2018, 11(1): 520-531. [13] Xiao F, Wang B, Hu X, et al. Thin film nanocomposite membrane containing zeolitic imidazolate framework-8 via interfacial polymerization for highly permeable nanofiltration[J]. Journal of The Taiwan Institute of Chemical Engineers, 2018, 83(2): 159-167. [14] Van Goethem C, Verbeke R, Pfanmoller M, et al. The role of MOFs in Thin-Film Nanocomposite (TFN) membranes[J]. Journal of Membrane Science, 2018, 563(1): 938-948. [15] 刘梦欣, 肖凡, 陈英波, 等. 改性氧化石墨烯接枝聚酰胺纳滤膜[J]. 膜科学与技术, 2019, 39(01): 72-80. [16] 张明, 李新冬, 代武川, 等. CNT改性聚砜复合纳滤膜去除水中微量PAEs的研究[J]. 应用化工, 2018, 47(07): 1404-1408+1411. [17] Lind M L, Ghosh A K, Jawor A, et al. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes[J]. Langmuir, 2009, 25(17): 10139-10145. [18] Vrijenhoek E M, Hong S, Elimelech M, et al. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 2001, 188(1): 115-128. [19] Yan Y, Gong J, Chen J, et al. Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications[J]. Advanced Materials, 2019, 31(21) : 283–305. [20] Kuehne M A, Song R Q, Li N N, et al. Flux Enhancement in TFC RO Membranes[J]. Environmental Progress, 2011, 20(1): 23–26. [21] 赵伟辰, 徐鑫, 白慧娟, 等. 自交联聚乙烯亚胺-聚砜高温质子交换膜研究[J]. 化学学报, 2020, 78(01): 69-75. [22] Bi R, Zhang Q, Zhang R, et al. Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property[J]. Journal of Membrane Science, 2018, 553(1): 17-24. [23] Zhang C, Wei K, Zhang W, et al. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 11082-11094. [24] Zhao F Y, Ji Y L, Weng X D, et al. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes[J]. ACS Applied Materials & Interfaces, 2016, 8(10), 6693–6700. [25] Wang Z, Wang Z, Lin S, Jin H, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nature Communications, 2018, 9(1) : 1-9. [26] Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale Turing structures for water purification.[J]. Science, 2018, 360(6388): 518-521. [27] Song Y, Sun P, Henry L L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of Membrane Science, 2005, 251(1): 67-79. [28] Zou H, Jin Y, Yang J, et al. Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach[J]. Separation and Purification Technology, 2010, 72(3): 256-262. [29] Cheng X Q, Wang Z, Jiang X, et al. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials[J]. Progress in Materials Science, 2018, 92(3): 258-283. [30] Bano S, Mahmood A, Kim S, et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. Journal of Materials Chemistry, 2015, 3(5): 2065-2071. [31] Hu D, Xu Z, Wei Y, et al. A high performance silica–fluoropolyamide nanofiltration membrane prepared by interfacial polymerization[J]. Separation and Purification Technology, 2013, 110(7): 31-38. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号