膜蒸馏系统的热质扩散耦合分析
作者:吉彦龙,卢小平,魏彦艳
单位: 兰州理工大学 石油化工学院,甘肃 兰州 730050
关键词: 相变;热质扩散耦合;逆流换热强化;膜通量
DOI号:
分类号: TK2
出版年,卷(期):页码: 2021,41(2):51-55

摘要:
 膜通量作为衡量膜蒸馏技术的重要指标,低膜通量严重限制了膜蒸馏技术的工业化发展。从相变耦合的角度和逆流换热耦合的角度以及蒸汽分子在膜孔中热质扩散耦合的角度出发,分别分析了热物料侧相变热质传递过程,膜蒸馏系统逆流换热过程以及蒸汽分子在膜孔中的热质扩散过程,并建立了三者与膜通量之间的关系式,得出了自发的蒸汽分子迁移过程驱动了非自发的传热过程,当传质过程强化时,蒸汽分子传递速率增加,导致膜通量增加;膜蒸馏系统换热的强化,有助于削弱温度极化,伴随着膜两侧表面温度梯度的增加,膜通量增加;关系式同时说明了减小膜的厚度,有利于膜通量增加。
 Membrane flux is an important index to measure membrane distillation technology. Low membrane flux seriously limits the industrial development of membrane distillation technology. From the perspective of phase change coupling and countercurrent heat transfer coupling and the thermal diffusion coupling of steam molecules in membrane pores, the phase change heat and mass transfer process at hot material side, countercurrent heat transfer process in membrane distillation system and vapor molecules in membrane are analyzed respectively,and the relationship between the heat and mass transfer process and the membrane flux is established. It is concluded that the spontaneous vapor molecular transfer process drives the non-spontaneous heat transfer process. When the mass transfer process is strengthened, the vapor molecular transfer rate increases, resulting in the increase of membrane flux, the enhancement of heat transfer in membrane distillation system helps to weaken the temperature polarization, accompanied by the increase of temperature gradient on both sides of the membrane surface,at the same time, the relationship also shows that the decrease of membrane thickness is beneficial to the increase of membrane flux

基金项目:
国家自然科学基金项目(51566010)

作者简介:
吉彦龙(第一作者),男,甘肃定西人,1994年生,硕士生,学生,主要研究方向为传热传质过程及其强化. Email:jyl1802259347@sina.cn;

参考文献:
[1] 杨座国编著.膜科学技术过程与原理[M].上海:华东理工大学出版社.2009.
    YANG Zuo-guo. Process and principle of membrane science and technology[M].Shanghai:EestChina University of Sciencen And Technology Press,2009.
[2] Wu Y, Kang Y, Zhang L, et al. Performance and fouling mechanis- m of direct contact membrrane distillation (DCMD) treating fementation wastewater with high organic concentrations [J]. Journal of Ental Sciences-china, 2017, 65(3): 253-261. 
[3] Zhao D, Zuo J, Lu K, et al. Fluorographite modified PVDF memb -ranes for seawater desalination via direct contact membrane distillation[J]. Desalination, 2017: 119-126.  
[4] Bouguecha S, Chouikh R, Dhahbi M, et al. Numerical study of the coupled heat and mass transfer in membrane distillation[J]. Desalination, 2003: 245-252.
[5] 高虹,田瑞,杨晓宏,等.高通量空气隙膜蒸馏传热研究[J].工程热物理学报,2010,31 (11):1897-1900
GAO Hong, TIAN Rui, YANG Xiao-hong, et al. Research for Heat Transfer of High Flux Air Gap Membrane Distillation[J].Journal of Engineering Thermophysics,2010,31 (11):1897-1900
[6] 刘捷,武春瑞,吕晓龙.减压膜蒸馏传热传质过程[J].化工学报,2011,62(04):908-915. 
LIU Jie,WU Chun-rui,LU Xiao-long. Heat and mass transfer in vacuum membrane distillation[J].Journal of Chemical Industry and Engineering(China), 2011,62(04):908-915.
[7] 高虹,田瑞,杨晓宏.空气隙膜蒸馏系统对流换热实验研究[J].能源研究与利用,2008(01):22-24.
GAO Hong,TIAN Rui,YANG Xiao-hong. Experimental study on convective heat transfer of air gap membrane distillation system[J]. Energy Research & Utilization, 2008(01):22-24. 
[8] Warczok J, Gierszewska M, Kujawski W, et al. Application of osmotic membrane distillation for reconcentration of sugar solutions from osmotic dehydration[J]. Separation and Purification Technology, 2007, 57(3): 425-429.
[9] 刘光良,朱之墀,黄东涛.空气隙膜蒸馏传质机理研究[C].//中国力学学会.第六届全国工业与环境流体力学会议论文集.
1999:163~168.
LIU Guang-liang,ZHU Zhi-chi,HUANG Dong-tao.A Study of Mechanism of Mass Transfer on Air Gap Membrane Distillation[C].// Chinese Society of Theoretical and Applied Mechanics. Proceedings of the Sixth National Conference on industrial and environmental hydrodynamics.
[10] 张仁元等编著.相变材料与相变储能技术[M].北京:科学出版社.2009.
     ZHANG Ren-yuan. Phase change materials and phase change energy storage technology[M].Beijing: Science Press.2009. 
[11] 潘艾刚,王俊彪,张贤杰.基于等效热容法和焓法的相变传热数值分析[J].计算机仿真,2014,31(02):315-319.
PAN Yi-gang,WANG Jun-biao,ZHANG Xian-jie.Numerical Analysis of Phase-Change Heat Transfer Characteristics Using Effective Heat Capacity Method and Enthalpy Method[J].Computer Simulation,2014,31(02):315-319. 
[12] 袁嘉成. 电场强化单组分汽液相变传热的热力学机理及其应用[D].华南理工大学,2016.
     YUAN Jia-cheng. Theory and Application of Heat Transfer byLiquid-Vapor Phase Change withElectric Field[D].South China University of Technology,2016.
[13] 卢小平,俞树荣,余建平等.流动换热强化的能量传递转换机制及其最小熵产原理[J].化工学报,2014,65(S1):336-339.
     LU Xiao-ping,YU Shu-rong,YU Jian-ping et al. Energy transfer conversion mechanism and minimum entropy generation principle for convective heat transfer enhancement[J].Journal of Chemical Industry and Engineering(China), 2014,65(S1):336-339.   
[14] 傅献彩,沈文霞,姚天扬.高等学校教材 物理化学 第4版 上[M].北京:高等教育出版社.1990.
     FU Xian-cai,SHENG Wen-xia,YAO Tian-yang. Teaching materials of colleges and Universities  physical chemistry the first volume of the Fourth Edition[M].Beijing:High Education Press.1990.
[15] 蒋新生编.工程流体力学[M].重庆:重庆大学出版社.2017.
     JIANG Xin-sheng. Engineering Fluid Mechanics[M].Chongqing:Chongqing University Press.2017.
[16] 陈彩胜.水相变过程的热力学耦合及结霜机理[J].甘肃科学学报,2018,30(06):112-115.
     CHENG Cai-sheng.Thermodynamic Coupling and Frost Mechanism of Water Phase Change Process[J].JOURNAL OF GANSU SCIENCES,2018,30(06):112-115. 
[17] Lee W H. Computational Methods for Two-Phase Flow and Particle Transport:(With CD-ROM)[M]. World Scientific Publishing Company, 2013.
[18] 卢小平. 热交叉现象广义场协同与热力学耦合[D].兰州理工大学,2016.
     LU Xiao-ping. Generalized Field Synergy and Thermodynamic Coupling in theThermal Crossover Process[D]. Lanzhou University of Technology,2016.
[19] 蒋汉文,邱信立编著.热力学原理及应用[M].上海:同济大学出版社.1990.
     JIANG Han-wen,QIU Xin-li. Principle and application of thermodynamics[M].Shanghai:Tongji University Press. 
[20] Meindersma G W, Guijt C M, De Haan A B, et al Desalinat-. ion and water recycling by air gap membrane distillation[J]. Desalination, 2006: 291-301. 
[21] Phattaranawik J, Jiraratananon R, Fane A G, et al. Heat transport and membrane distillation coefficients in direct contact membrane distillation[J]. Journal of Membrane Science, 2003, 212(1): 177-193.  
[22] Alklaibi A M, Lior N. Transport analysis of air-gap membrane distillation[J]. Journal of Me-  mbrane Science, 2005, 255(1): 239-253.  
[23] 马方伟,赵之平,郭轶琼,等.膜蒸馏过程传递机理研究进展 (1)直接接触式膜蒸馏[J].膜科学与技术,2008(01):86-90.
MA Fang-wei,ZHAO Zhi-ping,GUO Yi-qiong,et al. Advances in transfer mechanism in membrane distillation(1)Direct contact membrane distillation.Membrane Science and Technology, 2008(01):86-90. 
[24] 郭丹丹. 顺逆流换热优化的熵产悖论及其热力学分析[D].兰州理工大学,2016.
     GUO Dan-dan. Entropy Generation Paradox in Parallel and Counterflow HeatTransfer Optimization and Its Thermodynamic Analysis[D]. Lanzhou University of Technology,2016.
[25] 卢小平,俞树荣.对流换热场协同的散度效应[J].化工学报,2011,62(09):2464-2468.
     LU Xiao-ping, YU Shu-rong. Divergence effect of field synergy for convective heat transfer[J]. Journal of Chemical Industry and Engineering(China), 2011,62(09):2464-2468. 
[26] 卢小平,俞树荣,郭丹丹.从场协同到热力学耦合:流动换热强热力学机制[J].机械工程学报,2015,51(10):160-163+171.
     LU Xiao-ping,YU Shu-rong,GUO Dan-dan. From Field Synergy to Thermodynamics Coupling:Thermodynamics Mechanism for Convective Heat Transfer Enhancement[J].Journal of Mechanical Engineering,2015,51(10):160-163+171.
[27] 林瑞泰著.多孔介质传热传质引论[M].北京:科学出版社.1995.
     LIN Rui-tai. Introduction of heat and mass transfer in porous media[M].Beijing:Science Press.1995.   
[28] 崔鹏,魏凤玉主编.化工原理[M].合肥:合肥工业大学出版社.2003.
     CUI Peng,WEI Feng-yu. Principles of Chemical Engineering[M].Hefei: Hefei University of Technology Publishing House.2003. 
[29] 贾力等编.高等传热学[M].北京:高等教育出版社.2003.
   JIA Li. Advanced heat transfer[M].Beijing:High Education Press.2003

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号