SAPO-34分子筛膜的合成及CO2/CH4分离性能研究进展
作者:张红霞,李强,徐长友,邴连成,王广建
单位: 青岛科技大学 化工学院,青岛 266042
关键词: SAPO-34分子筛膜;合成; CO2/CH4分离;研究进展
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2021,41(2):134-139

摘要:
 具有CHA骨架结构的SAPO-34 分子筛及分子筛膜因其规整的孔道结构、适度且可调控的表面酸性、优良的热和水热稳定性在气体分离领域具有广泛的应用前景。本文主要介绍目前SAPO-34膜的合成方法,影响SAPO-34分子筛膜分离性能的主要因素,着重探讨了SAPO-34分子筛膜合成体系各参数的调控和优化策略,概述目前SAPO-34分子筛膜CO2/CH4分离领域研究现状和需要进一步解决的问题。分析CO2气体分离产工业化进程及存在的问题,并指出SAPO-34分子筛膜的研究发展方向。
 SAPO-34 membrane with CHA framework structure have wide application prospects in gas separation and other fields due to their regular pore structure, moderate and adjustable surface acidity, excellent thermal and hydrothermal stability. In this review, we introduced the synthesis method, influencing factors and application of SAPO-34 membrane for CO2/CH4 separation, focused on the control and optimization strategy of parameters in the synthesis system of SAPO-34 membrane. Meanwhile, we summarized the current research status and problems to be further solved in the field of SAPO-34 membrane for CO2/CH4 separation, and pointed out the research and development direction of SAPO-34 membrane.

基金项目:
山东省自然科学基金(ZR2018LB027),省部共建煤炭高效利用与绿色化工国家重点实验室开放课题(2017-K23),山东省生态化工协同创新中心人才基金(XTCXQN15)

作者简介:
张红霞(1990-),女,河北邢台人,博士,在读研究生,沸石分子筛及分子筛膜合成及应用,E-mail:17685821602@163.com

参考文献:
 [1] Wu T, Diaz M C, Zheng Y, et al. Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes[J], J Membr Sci, 2015, 473: 201-209.
[2] Baker R W. Future directions of membrane gas-separation technology[J], Membr Technol, 2001, 138: 5-10.
[3] Funke H H , Chen M Z, Prakash A N, et al. Separating molecules by size in SAPO-34 membranes[J], J Membr Sci, 2014, 456: 185–191.
[4] Poshusta J C, Noble R D, Falconer J L. Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes[J], J Membr Sci, 1999, 160: 115-125.
[5] Nicolas C H, Sublet J, Schuurman Y, et al. Role of adsorption and diffusion pathways on the CO2/N2 separation performance of nanocomposite (B)-MFI-alumina membranes[J], Chem Eng Sci, 2011, 66: 6057-6068.
[6] Lindmark J, Hedlund J. Modification of MFI membranes with amine groups for enhanced CO2 selectivity[J], J Mater Chem, 2010, 20: 2219-2225.
[7] Tomita T, Nakayama K, Sakai H. Gas separation characteristics of DDR type zeolite membrane[J], Microporous Mesoporous Mater, 2004, 68: 71-75.
[8] Mirfendereski S M, Mazaheri T, Sadrzadeh M, et al. CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure[J], Sep Purif Technol, 2008, 61: 317-323.
[9] Cui Y, Kita H, Okamoto K. Preparation and gas separation performance of zeolite T membrane[J], J Mater Chem, 2004,14: 924-932.
[10] White J C, Dutta P K, Shqau K, et al. Synthesis of ultrathin zeolite Y membranes and their application for separation of carbon dioxide and nitrogen gases[J], Langmuir, 2010, 26: 10287-10293.
[11] Kusakabe K, Kuroda T, Murata A, et al. Formation of a Y-type zeolite membrane on a porous α-alumina tube for gas separation[J], Ind Eng Chem Res, 1997, 36: 649-655.
[12] Carreon M L, Li S, Carreon M A. AlPO-18 membranes for CO2/CH4 separation[J], Chem Commun, 2012,48: 2310-2312.
[13] Zhou R, Ping E W, Funke H H, et al. Improving SAPO-34 membrane synthesis[J], J Membr Sci, 2013, 444: 384-393.
[14] Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separation[J], J Membr Sci, 2004, 241: 121-135.
[15] Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio[J], Microporous Mesoporous Mater, 2008, 110: 310-317.
[16] Carreon M A, Li S, Falconer J L, et al. SAPO-34 seeds and membranes prepared using multiple structure directing agents[J], Adv Mater, 2008, 20: 729-732.
[17] Bai L, Chang N, Nan, Li M, et al. Ultrafast synthesis of thin SAPO-34 zeolite membrane by oil-bath heating[J], Microporous Mesoporous Mater, 2017, 241: 392-399.
[18] Zong Z, Carreon M A. Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation[J], J Membr Sci,  2017, 524: 117-123.
[19] Alam S F, Kim M.Z, Kim Y J, et al. A new seeding method, dry rolling applied to synthesize SAPO-34 zeolite membrane for nitrogen/methane separation[J], J Membr Sci, 2020, 602: 117825.
[20] Chew T L, Ahmad A L, Bhatia S. Rapid synthesis of thin SAPO-34 membranes using microwave heating, J Porous Mat, 2011, 18: 355–360.
[21] Liu X, Du S, Zhang B. The seeded growth of dense and thin SAPO-34 membranes on porous α-Al?O? substrates under microwave irradiation, Mater Lett, 2013, 91: 195-197.
[22] Bing L, Liu X, Zhang B. Synthesis of thin CrAPSO-34 membranes by microwave-assisted secondary growth[J], J Mater Sci, 2016, 51: 1476-1483.
[23] Bing L, Wang G, Wang F, et al. Preparation of a preferentially oriented SAPO-34 membrane by secondary growth under microwave irradiation[J], RSC Adv, 2016, 6: 56170-56173.
[24] Akhtar F, Ojuva A, Wirawan S K, et al. Hierarchically porous binder-free silicalite-1 discs: a novel support for all-zeolite membranes[J], J Mater Chem, 2011, 21: 8822-8828.
[25] Kosinov N, Gascon J, Kapteijn F, et al.  Recent developments in zeolite membranes for gas separation[J], J Membr Sci, 2015, 499: 65-79.
[26] Carreon M A, Li S, Falconer J L, et al. Alumina-supported SAPO-34 membranes for CO2/CH4 separation[J], J Am Chem Soc, 2008, 130: 5412-5413.
[27] Poshusta J C, Tuan V A, Pape E A, et al. Separation of light gas mixtures using SAPO-34 membranes[J], AICHE J, 2000, 46: 779-789.
[28] Liu B, Tang C, Li X, et al. High-performance SAPO-34 membranes for CO2 separations from simulated flue gas[J], Microporous Mesoporous Mater, 2020, 292: 109712.
[29] Kiadehi A D, Taghizadeh M, Rami M D. Preparation of Pd/SAPO-34/PSS composite membranes for hydrogen separation: Effect of crystallization time on the zeolite growth on PSS support[J], J Ind Eng Chem, 2020, 81: 206-218.
[30] Tian Y, Fan L, Wang Z, et al. Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture[J], J Mater Chem, 2009, 19: 7698-7703.
[31] Rehman R U, Song Q, Peng L, et al. Hydrophobic modification of SAPO-34 membranes for improvement of stability under wet condition[J], Chinese J Chem Eng, 2019, 27: 2397-2406.
[32] Yang S, Chiang Y, Nair S. Scalable one-step gel conversion route to high-performance CHA zeolite hollow fiber membranes and modules for CO2 separation[J], Energy Technol-Ger, 2019, 7(9): 1900494.
[33] 李刚, 王金渠, 杨建华, 等. 二次生长法合成SAPO-34沸石膜及其气体渗透性能[J], 硅酸盐通报, 2009, 28: 887-892.
[34] Jabbari Z, Fatemi S, Davoodpour M. Comparative study of seeding methods; dip-coating, rubbing and EPD, in SAPO-34 thin film fabrication[J], Adv Powder Technol, 2014, 25: 321-330.
[35] Simonot-Grange M H, Waldeck A, Barthomeuf D, et al. Contribution to the study of framework modification of SAPO-34 and SAPO-37 upon water adsorption by thermogravimetry[J], Thermochim Acta, 1999, 329: 77-82.
[36] Rehman R U, Song Q, Peng L, et al. A facile coating to intact SAPO-34 membranes for wet CO2/CH4 mixture separation[J], Chem Eng Res Des, 2020, 153: 37-48.
[37] Najafi N, Askari S, Halladj R. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multi templates[J], Powder Technol, 2014, 254: 324-330.
[38] 王金渠, 杨建华, 李华征,等. 沸石分子筛膜研究进展[J]. 膜科学与技术, 2014, 34(3): 1-7.
[39] 郝阿辉, 刘晓红, 刘秀凤, 张宝泉. 微波辅助二次生长法合成SAPO-34分子筛膜与关键影响因素[J]. 化工学报, 2017, 068(002): 716-722.
[40] Zhang Y, Wang M, Liu S, et al. Mild template removal of SAPO-34 zeolite membranes in wet ozone environment[J], Sep Purif Technol, 2019, 228: 115758.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号