微孔桥联有机硅杂化膜的制备方法及影响因素研究进展
作者:廖明佳,朱韵,任秀秀,龚耿浩
单位: 重庆化工职业学院,重庆401228;天津工业大学 材料科学与工程学院 分离膜与膜过程国家重点实验室,天津 300387;重庆工程职业技术学院,重庆402260;常州大学,常州123164
关键词: 桥联有机硅,有机硅分离膜,溶胶-凝胶,膜制备
DOI号:
分类号: TQ219
出版年,卷(期):页码: 2021,41(2):147-156

摘要:
 桥联型有机硅是以桥联倍半硅氧烷为硅源前驱体,通常利用溶胶-凝胶法水解缩聚反应而制得。与传统基于正硅酸乙酯(TEOS)制备的无机SiO2材料相比,桥联有机硅膜具有更优良的水热稳定性且孔道类型、尺寸、表面性质便于灵活调控等独特优点,使其在气体分离、反渗透脱盐,渗透汽化脱水、有机溶剂分离等领域展现出广阔的应用前景和独特的性能优势。本综述主要介绍了桥联型有机硅前驱体类型、制膜方法以及对其分离性能的影响因素,并探讨了其在膜分离领域的应用研究进展。
 Bridged organosilica is commonly prepared by sol-gel hydrolysis and condensation reaction using bridged sesquiosiloxane as precursors. Compared with the traditional inorganic SiO2 material based on TEOS, the bridged organosilica membranes present advantages of higher hydrothermal stability, and convenient and flexible tuning of pore size and surface properties, which broad the application prospects and unique properties in gas separation, reverse osmosis in desalination, pervaporation dehydration, organic solvent separation and other fields. This review mainly introduced the types of bridged organosilica precursors, membrane preparation and the effect factors of their separation performances, and the applications and research progress in the field of membrane separation were discussed.

基金项目:
重庆市教育委员会科学技术研究基金(KJQN201904501);天津市自然科学基金(18JCYBJC43300); 天津市科技计划项目(20ZYJDJC00100);江苏省绿色催化材料与技术重点实验室开放课题基金(BM2012110);重庆市教委科学技术研究项目(KJQN202003408)

作者简介:
廖明佳(1983.05-),女,重庆,副教授,硕士,研究生,化工新型材料制备.

参考文献:
 [1] 李红宾,訾兴晨等.疏水性分离膜制备技术的研究进展[J].化工新型材料,2015,46(10):230-234. 
[2] Nunes S.P., Peinemann K.V., et al. Membrane Technology: in the Chemical Industry, John Wiley & Sons, Germany, 2006.
[3] Li N.N., Fane A.G., et al. Advanced Membrane Technology and Applications, John Wiley & Sons Inc., New Jersey, 2008. 
[4] 徐南平, 高从堦等.中国膜科学技术的创新进展 [J]. 中国工程科学, 2014,12:4-9.
[5] 严浩军,张帅等. 一种ZIF-8/有机硅杂化膜的制备及性能研究[J]. 膜科学与技术, 2019,39(1):9-15.
[6] Asefa T., MacLachlan M.J., et al. Periodic mesoporous organosilicas with organic groups inside the channel walls [J]. Nature, 1999,402:867-871.
[7] Hoffmann F., Cornelius M., et al. Silica-based mesoporous organic-inorganic hybrid materials [J]. Angewandte Chemie International Edition, 2006,45:3216-3251.
[8] Castricum H. L., Paradis G.G., et al. Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group [J]. Advanced functional Materials, 2011,21:2319−2329. 
[9] 汪孟,良宋健峰等. 磺酸甜菜碱-硅氧烷型两性离子化学和涂层改性PVDF微孔膜对腐殖酸和蛋白质污染的分析[J]. 膜科学与技术, 2019,3:29-35.
[10] Akamatsu K., Suzuki M., et al. Development of hydrogen-selective dimethoxydimethylsilane-derived silica membranes withthin active separation layer by chemical vapor deposition[J]. Journal of Membrane Science, 2019, 580:268–274.
[11] Yu X., Meng L., Niimi T., et al. Network engineering of a BTESE membrane for improved gas performance via a novel pH-swing method[J]. Journal of Membrane Science, 2016, 511: 219–227.
[12] Drioli E., Ali A., et al. Membrane distillation: Recent developments and perspectives [J]. Desalination, 2015, 
356:56-84.
[13] Ren X., Tsuru T, Organosilica-Based Membranes in Gas and Liquid-Phase Separation [J]. Membranes, 2019, 9(9):107.
[14] Castricum H.L., Sah A., et al. Hybrid ceramic nanosieves: stabilizing nanopores with organic links [J]. Chemical Communications, 2008,1103-1105.
[15] Castricum H.L., Kreiter R., et al. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability [J]. Journal of Membrane Science, 2008, 324(1):111-118.
[16] Van Veen., Rietkerk H.M., et al. Pushing membrane stability boundaries with HybSi (R) pervaporation membranes[J]. Journal of Membrane Science, 2011, 380, 124–131.
[17] Kanezashi M., Yada K., et al. Design of silica Networks for development of highly permeable hydrogen separation membranes with hydrothermal stability[J]. Journal of the American Chemical Society, 2009,131 (2): 414-415.
[18] Kanezashi M., Yoneda Y., et al. Gas permeation properties for organosilica membranes with di erent Si/C ratios and evaluation of microporous structures[J]. AIChE Journal, 2017,63: 4491–4498.
[19] Kreiter R., Rietkerk M.D.A., et al. Evaluation of hybrid silica sols for stable microporous membranes using high-throughput screening[J]. Journal of Sol-Gel Science and Technology, 2011, 57(3): 245–252.
[20] Kanezashi M., Kawano M., et al. T. Organic-Inorganic Hybrid Silica Membranes with Controlled Silica Network Size for Propylene/Propane Separation[J]. Industrial & Engineering Chemistry Research, 2011, 51, 944–953.
[21] Ibrahim S.M., Xu R., et al. Insight into the pore tuning of triazine-based nitrogen-rich organoalkoxysilane membranes for use in water desalination[J]. RSC Advance, 2014, 4, 23759–23769.
[22] Ren X., Nishimoto K., et al.T. CO2 Permeation through Hybrid Organosilica Membranes in the Presence of Water Vapor[J]. Industrial & Engineering Chemistry Research, 2014, 53, 6113–6120.
[23] Kanezashi M., Yada K., et al. Organic–inorganic hybrid silica membranes with controlled silica network size: Preparation and gas permeation characteristics[J]. Journal of Membrane Science, 2010, 348, 310–318.
[24] Gong G.H., Wang J.H., et al. Sol–gel spin coating process to fabricate a new type of uniformand thin organosilica coating on polysulfone film[J]. Materials Letters, 2013, 109:130–133.
[25] Xu R., Lin P., et al. Development of Ethenylene-Bridged Organosilica Membranes for Desalination Applications[J]. Industrial & Engineering Chemistry Research, 2016, 55, 2183–2190.
[26] Xu R., Ibrahim S.M., et al. New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges[J]. ACS Applied Materials & Interfaces, 2014, 6, 9357–9364.
[27] Yamamoto K., Muragishi H., et al. Diethylenedioxane-bridged microporous organosilica membrane for gas and water separation[J]. Separation and Purification Technology, 2018, 207, 370–376.
[28] Ibrahim S.M., Xu R., et al. A closer look at the development and performance of organic–inorganic membranes using 2,4,6-tris[3(triethoxysilyl)-1-propoxyl]-1,3,5-triazine (TTESPT) [J]. RSC Advance, 2014, 4, 12404.
[29] Yu L., Kanezashi M., et al. Pyrimidine-bridged organoalkoxysilane membrane for high-e_ciency CO2 transport via mild a nity[J]. Separation and Purification Technology, 2017, 178, 232–241.
[30] Wang J.H., Kanezashi M., et al. Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes[J]. Journal of Membrane Science, 2012,415–416:810–815.
[31] Gong G.H., Wang J.H., et al. Synthesis and characterization of a layered-hybrid membrane consisting of an organosilica separation layer on a polymeric nanofiltration membrane[J]. Journal of Membrane Science, 2014,472:19-28.
[32] Ngamou P.H.T., Overbeek J.P., et al. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges[J]. Journal of Materials Chemistry, 2013, 1:5567–5576.
[33] Tsuru T., Shibata T., et al. Pervaporation of acetic acid aqueous solutions by organosilica membranes[J]. Journal of Membrane Science, 2012,421–422,25–31. 
[34] Xu R., Kanezashi M., et al. Tailoring the Affinity of Organosilica Membranes by Introducing Polarizable Ethenylene Bridges and Aqueous Ozone Modification[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6147-6154.
[35] Gong G.H., Hiroki N., et al. Facile and Scalable Flow-Induced Deposition of Organosilica on Porous Polymer Supports for Reverse Osmosis Desalination[J]. ACS Applied Materials & Interfaces, 2018, acsami.7b19075.
[36] Dong G.Y., Hiroki N., et al. Energy-efficient separation of organic liquids using organosilica membranes via a reverse osmosis route[J]. Journal of Membrane Science, 2020,597,117758. 
[37] Dong G.Y., Hiroki N., et al. Pervaporation removal of methanol from methanol/organic azeotropes using organosilica membranes: Experimental and modeling[J]. Journal of Membrane Science, 2020,610,118284.
[38] Bonekamp B.C., Preparation of asymmetric ceramic membrane supports by dipcoating, in: A.J. Burggraaf, L. Cot (Eds.), Fundamentals of Inorganic Membrane Science and Technology, vol. 4, Elsevier, Amsterdam, 1996 Chapter 6.
[39] Castricum H.L., Sah A., et al. Hydrothermally stable molecular separation membranes from organically linked silica [J]. Journal of Materials Chemistry , 2008,18(18):2150-2158.
[40] Brinker C.J., Frye G.C., et al. Fundamentals of sol-gel dip coating[J]. Thin Solid Films, 1991,201: 97–108.
[41] Gong G.H., Wang J.H., et al. Supplementary Information for Formation and prevention of fractures in sol-gel-derived thin ?lms [J]. Journal of Membrane Science, 2014,464: 140–148.
[42] Asaeda M., Okazaki K., et al. Preparation of thin porous silica membranes for separation of non-aqueous organic solvent mixtures by pervaporation[J]. Ceramic transactions, 1992,31:411-420.
[43] Asaeda M., Yang J., et al. Porous Silica-Zirconia (50%) membranes for pervaporation of iso-propyl Alcohol (IPA)/water mixtures[J]. Journal of chemical engineering of Japan, 2002,35(4): 365–371.
[44] Xu R., Kanezashi M., et al. Tailoring the Affinity of Organosilica Membranes by Introducing Polarizable Ethenylene Bridges and Aqueous Ozone Modification[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6147-6154.
[45] Marthelot J., Roman B., et al. Self-replicating cracks: A collaborative fracture mode in thin films[J]. Physical Review Letters, 2014, 113: 1-5.
[46] Gong G.H., Wang J.H., et al. Synthesis and characterization of a layered-hybrid membrane consisting of an organosilica separation layer on a polymeric nanofiltration membrane[J]. Journal of Membrane Science, 2014,472:19-28.
[47] Lourenço M.N.O., Siquet C., et al. Insights into CO2 and CH4 Adsorption by Pristine and Aromatic Amine-Modified Periodic Mesoporous Phenylene-Silicas[J]. The Journal of Physical Chemistry C, 2016, 120, 14236−14245.
[48] Guo Y. J., Zu X. T., et al. Laser-Induced Damage Mechanism of the Sol−Gel Single-Layer SiO2 Acid and Base Thin Films[J]. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms ,2008, 266, 3190−3194.
[49] Yang X.Y., Du H.B., et al. Hybrid organosilica membrane with high CO2 permselectivity fabricated by a two-step hot coating method[J]. Journal of Membrane Science, 2016,506:31–37.
[50] Niimi T., Nagasawa H., et al. Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation[J]. Journal of Membrane Science, 2014, 455, 375–383.
[51]Kanezashi M., Matsugasako R., et al. Pore size tuning of sol gel-derived triethoxysilane (TRIES) membranes for gas separation[J]. Journal of Membrane Science,2017, 524:64–72.
[52] Ibrahim S. M., Nagasawa H., et al. Robust organosilica membranes for high temperature reverse osmosis (RO) application: Membrane preparation, separation characteristics of solutes and membrane regeneration[J]. Journal of Membrane Science, 2015, 493:515–523.
[53] Castricum H.L., Qureshi H.F., et al. Hybrid silica membranes with enhanced hydrogen and CO2 separation properties[J]. Journal of Membrane Science, 2015, 488:121–128.
[54] Moriyama N., Nagasawa H., et al. Pervaporation dehydration of aqueous solutions of various types of molecules via organosilica membranes: E_ect of membrane pore sizes and molecular sizes[J]. Separation and Purification Technology, 2018, 207:108–115.
[55] Song H., Wei Y., et al. Tuning sol size to optimize organosilica membranes for gas separation[J]. Chinese Journal of Chemical Engineering, 2018, 26, 53–59. 
[56] 漆虹,韩静等.有机−无机复合SiO2 膜的制备及水蒸气稳定性能研究[J].无机材料学报,  2010,25 (7 )758-764. 
[57] De Vos R.M., Verweij H., High-Selectivity, High-Flux Silica Membranes for Gas Separation[J]. Science, 1998, 279:1710.
[58] Xu R., Wang J., et al. Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties[J]. AIChE Journal, 2013, 59:1298–1307.
[57] Kanezashi M., Shazwani W. N., et al. Separation of propylene/propane binary mixtures by bis(triethoxysilyl) methane (BTESM)-derived silica membranes fabricated at di_erent calcination temperatures[J]. Journal of Membrane Science, 2012, 415–416:478–485.
[59] Song H., Wei Y., et al. Tailoring pore structures to improve the permselectivity of organosilica membranes by tuning calcination parameters[J]. Journal of Materials Chemistry A, 2017, 5, 24657-24666.
[60] Patrick H.T. N., Johan P.O., et al. On the enhancement of pervaporation properties of plasma-deposited hybrid silica membranes[J]. RSC Advances, 2013,3,14241.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号