磺化聚砜/POSS杂化质子传导膜的制备及钒电池性能 |
作者:郑建丽,王丽华,韩旭彤 |
单位: 1. 天津工业大学材料科学与工程学院,天津 300387; 2. 中国科学院化学研究所,绿色印刷院重点实验室,北京 100190 |
关键词: 磺化聚砜;POSS;质子传导膜;全钒液流电池 |
DOI号: |
分类号: TQ050.4+25 |
出版年,卷(期):页码: 2021,41(3):59-67 |
摘要: |
将磺化度(DS)为62%的磺化聚砜(SPSF)与笼型倍半硅氧烷(POSS-NH2)进行共混,得到系列SPSF/POSS-NH2杂化质子交换传导膜,研究POSS-NH2含量对SPSF/POSS-NH2膜的吸水率、面电阻、质子电导率、钒离子渗透率、机械强度、耐氧化性能及相应钒电池性能的影响。研究表明,添加POSS-NH2后,热分解温度提高,质子电导率可达10.55 mS/cm,POSS-NH2含量为5 wt%的S-P-5%杂化膜的钒离子渗透率降低至5.47×10-9 cm2/min,质子选择性提高(1.930×106 S•min/cm3),远优于Nafion115膜(1.23×105 S•min/cm3)和纯SPSF膜(S-P-0%膜)(5.41×105 S•min/cm3)。与纯SPSF膜S-P-0%膜相比,S-P-5%为电池效率最佳,库伦效率可稳定维持在99.4%左右,高于Nafion115膜(92.38%)和S-P-0%膜(91.72%),电压效率和能量效率也得到明显提升,300个循环仍然具有较稳定的电池效率,自放电时间达117 h,是Nafion115膜的10倍,POSS的引入为SPSF质子交换传导膜性能的提升提供了新思路。 |
A series of SPSF/POSS-NH2 hybrid proton exchange conductive membranes were prepared by blending sulfonated polysulfone (SPSF) with the degree of sulfonation (DS) of 62% and aminopropyllsobutyl polyhedral oligomeric silsesquioxane (POSS-NH2). The effect of content of the POSS-NH2 on the water uptake, area resistance, ptoton proton conductivity, vanadium permeability, mechanical strength, oxidation resistance and the performance of vanadium redox flow battery are investigated in detailed. The results showed that the addition of POSS-NH2 increases the thermal decomposition temperature and proton conductivity to a value of 10.55 mS/cm. When the content of POSS-NH2 is 5wt%, the S-P-5% hybrid membrane exhibited lower vanadium permeability of 5.47×10-9 cm2/min, and higher proton selectivity (1.930×106 S•min/cm3), better than Nafion115 membrane (1.23×105 S•min/cm3) and S-P-0% membrane(5.41×105 S•min/cm3). Compared with S-P-0% membrane, S-P-5% membrane showed the best battery efficiency. Its coulombic efficiency(CE) can be maintained at about 99.4%, which is higher than Nafion 115 membrane (92.38%) and S-P-0% membrane (91.72%). Meanwhile, The the voltage efficiency and energy efficiency have also been significantly improved. The battery efficiency is still stable after 300 cycles, and the self-discharge time is 117 h, which is 10 times than that of Nafion 115 membrane. The introduction of POSS provides a new idea for the improvement of SPSF proton exchange conductive membrane performance. |
基金项目: |
国家自然科学基金(21878317);北京市自然科学基金-海淀原始创新联合基金(L172047) |
作者简介: |
郑建丽(1995-),女,山西省长治市,硕士,主要从事质子交换膜研究 |
参考文献: |
[1] 张文亮, 丘明, 来小康. 储能技术在电力系统中的应用[J]. 电网技术, 2008, 32(07):5-13. [2] Smil, V. Phosphorus in the environment: natural flows and human interferences[J]. Annual Review of Energy and the Environment, 2000, 25(1):53-88. [3] Yang Zhenguo, Zhang Jianlu, Kintner-Meyer M C W, et al. Electrochemical Energy Storage for Green Grid[J]. Chemical Reviews, 2011, 111(5):3577-3613. [4] Liu Jun, Zhang Jiguang, Yang Zhenguo, et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid[J]. Adv Funct Mater, 2013, 23(8):929-946. [5] Radford G J W, Cox J, Wills R G A, et al. Electrochemical characterisation of activated carbon particles used in redox flow battery electrodes[J]. Journal of Power Sources, 2008, 185(2):1499-1504. [6] Huskinson B, Marshak M P, Suh C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482):195-198. [7] Leung P, LI Xiaohong, Poncedeleon C, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. Rsc Advances, 2012, 2(27):10125-10156. [8] Skyllas-Kazacos M, Grossmith F. Efficient Vanadium Redox Flow Cell[J]. Journal of The Electrochemical Society, 1988, 134(12):2950-2953. [9] Sum E, Rychcik M, Skyllas-Kazacos M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery[J]. Journal of Power Sources, 1985, 16(2):85-95. [10] Ding Cong, Zhang Huamin, Li Xianfeng, et al. Vanadium Flow Battery for Energy Storage: Prospects and Challenges[J]. The Journal of Physical Chemistry Letters, 2013, 4(8):1281-1294. [11] Sum E, Skyllas-Kazacos M. A study of the V(II)/V(III) redox couple for redox flow cell applications[J]. Journal of Power Sources, 1985, 15(2-3):179-190. [12] Vijayakumar M, Bhuvaneswari M S, Nachimuthu P, et al. Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries[J]. Journal of Membrane science, 2011, 366(1-2):325-334. [13] Mohammadi T, Chieng S C, Kazacos M S. Water transport study across commercial ion exchange membranes in the vanadium redox flow battery[J]. Journal of Membrane science, 1997, 133(2):151-159. [14] Li Xianfeng, Zhang Huamin, Mai Zhensheng, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4):1147-1160. [15] Li Zhaohua, Xi Jingyu, Zhou Haipeng, et al. Preparation and characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application[J]. Journal of Power Sources, 2013, 237:132-140. [16] Yan Xiaoming, Zhang Caimian, Dai Yan, et al. A novel imidazolium-based amphoteric membrane for high-performance vanadium redox ?ow battery[J]. Journal of Membrane Science, 2017, 544:98-107. [17] 邢丹敏,刘富强,于景荣,等. 磺化聚砜膜的燃料电池性能初步研究[J]. 膜科学与技术, 2002, 22(05):12-16+24. [18] Lufrano F., Squadrito G, et al. Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells[J]. Journal of Applied Polymer Science, 2000, 77(6):1250–1256. [19] Lufrano F, Gatto I, et al. Sulfonated polysulfone ionomer membranes for fuel cells[J]. Solid State Ionics, 2001, 145(1-4):47–51. [20] Jiang Shengjuan, Lu Shanfu, Yan Xiang, et al. The Structure–Activity Relationship in Membranes for Vanadium Redox Flow Batteries[J]. Advanced Sustainable Systems, 2019, 3(8). [21] Zhang Yuxia, Zheng Lanyue, Liu Bo, et al. Sulfonated polysulfone proton exchange membrane in?uenced by a varied sulfonation degree for vanadium redox ?ow battery[J]. Journal of Membrane Science, 2019, 584:173-180. [22] Liu Bo, Zhang Yuxia, Jiang Yunhu, et al. High performance acid-base composite membranes from sulfonated poly sulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery[J]. Journal of Membrane Science, 2019, 591. [23] 高党鸽, 王平平, 吕斌,等. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(2):550-557. [24] Zhang Fangfang, Tu Zhengkai, Yu Jun, et al. Impregnation of imidazole functionalized polyhedral oligomeric silsesquioxane in polymer electrolyte membrane for elevated temperature fuel cells[J]. Rsc Advances, 2013, 3(16):5438-5446. [25] Liu Qingting, Bao Xujin, Rogers D M, et al. Novel ABPBI/POSS composite membranes for high temperature PEMFC applications[J]. Fuel Cell Seminar 2010, 2011, 30(1):25-32. [26] 赵亮, 黄玉东. 无机杂化倍半硅氧烷/磺化杂萘联苯聚醚酮质子导电复合膜[J]. 化学与粘合, 2008, 30(1):9-12. [27] Ding Liming, Song Xipeng, Wang Lihua, et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications[J]. Journal of Membrane Science, 2019, 578, 126-139. [28] 王亚辉, 刘金宇, 王丽华,等. 不同酸质子化聚苯并咪唑膜的制备及钒电池应用[J]. 膜科学与技术, 2019, 39(6):129-137. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号