聚乙二醇-聚己内酯嵌段共聚物对聚酰胺膜结构及性能的影响 |
作者:胡利杰 梁松苗,姚艳 |
单位: 时代沃顿科技有限公司,贵州 贵阳,550018 |
关键词: 呼吸图法;界面聚合;嵌段共聚物;蜂窝状结构;耐溶剂 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2021,41(3):68-76 |
摘要: |
采用呼吸图法和界面聚合相结合的方法,利用两亲性聚乙二醇-聚己内酯嵌段共聚物(PEG-b-PCL)调控胺单体在界面聚合过程中的扩散速率制备聚酰胺膜,并研究了嵌段共聚物PEG-b-PCL对聚酰胺(PA)膜结构及性能的影响。结果表明,PEG-b-PCL能够明显提高胺单体的扩散速率,所制备的PA膜呈有序“蜂窝”状,结构高度规整化,膜厚60nm,孔径1.2μm。PA膜在丙酮溶液中的截留分离量为373g/mol,并保持较高的通量,有机溶剂中的溶胀度为7%左右,具有良好的耐溶剂性,在25bar高压下连续运行48h,渗透系数维持在3.7L/m2·h·bar,染料截留率保持稳定,耐压性能优异。 |
Polyamide(PA)membranes were prepared by regulating diffusion rate of amine monomer with the method of the breathing pattern method and the interfacial polymerization. Moreover, the effect of PEG-b-PCL on membranes structure and performance was studied. The results showed that PA membranes with ordered honeycomb structure were prepared by changing the diffusion rate of amine during the interfacial polymerization. The thickness and pore size of PA membranes are about 60 nm and 1.2 μm, respectively. Furthermore, Molecular Weight Cut Off (MWCO) of PA membranes is 373 g/mol and the swelling degree of membranes is about 7%, in addition, the permeability coefficient is kept 3.7 L/m2·h·bar when operation time and operation pressure of membranes was 48h and 25bar, respectively. In a word, PA membranes have showed well organic-resistant and pressure- resistant properties. |
基金项目: |
国家重点研发计划项目(2017YFC0403900);国家重点研发计划项目(2016YFE0118800) |
作者简介: |
胡利杰(1985- )女,河南新乡人,高级工程师,主要从事水处理膜材料的研究与产业化 |
参考文献: |
[1] Werber J R, Osuji C O, Elimelec M. Materials for next-generation desalination and water purification membranes[J]. Nature Revivews Materials, 2016, 1(5): 16018-16029. [2] Xiang J, Xie Z, Hong M, et al. Effect of ammonium salts on the properties of poly(piperazineamide) thin film composite nanofiltration membrane[J]. Journal of Membrane Science, 2014, 465(none):34-40. [3] Gohil J M, Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination[J]. Separation and Purification Techno logy, 2017, 181(none):159-182. [4] 薛白,刘四华,郭寒雨,等.基于有机溶剂的中空纤维纳滤膜微结构调控[J]. 膜科学与技术, 2019, 39(5):81-86. [5] Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. [6] Liang Y , Zhu Y , Liu C , et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation[J]. Nature Communications, 2020, 11(1): 1-9. [7] Karan S, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. [8] Yuan B, Zhao S, Hu P, et al. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification[J]. Nature Communications. 2020, 6102(11): 1-12. [9] 周志涵. 呼吸图法纤维素基有序多孔膜的制备及研究[D]. 湖南工业大学,2019. [10] Yabu H. Fabrication of Honeycomb Films by the Breath Figure Technique and Their Applications[J]. Science and Technology of Advanced Materials, 2018, 19(1): 802-822. [11] 段宪法. 高性能聚合物微纳米多孔膜的制备与控制[D]. 中北大学, 2019. [12] Mao Y, Mei Z, Wen J, et al. Honeycomb structured porous films from a platinum porphyrin-grafted poly(styrene-co-4-vinylpyridine) copolymer as an optical oxygen sensor[J]. Sensors& Actuators, 2018(257): 944-953. [13] Bera S, Pal M, Sarkar S, et al. Hierarchically Structured Macro with Nested Mesoporous Zinc Indium Oxide Conducting Film[J]. Acs Applied Materials & Interfaces, 2017, 9(5): 4420-4424. [14] Su Y, Dang J, Zhang H, et al. Supramolecular Host-Guest Interaction-Enhanced Adjustable Drug Release Based on β-Cyclodextrin-Functionalized Thermoresponsive Porous Polymer Films[J]. Langmuir, 2017, 33(30): 7393-7402. [15] 魏永明,蒋玉莹,杨虎,等.呼吸图法制备三醋酸纤维素蜂窝状多孔膜[J]. 膜科学与技术,2017, 37(6): 1-6. [16] 王文恒, 张辰, 于跃,等. 呼吸图案法制备聚苯乙烯-b-聚甲基丙烯酸甲酯有序多孔膜[J]. 大连工业大学学报, 2019, 38(4): 278-281. [17] 王威, 卞玲玲, 刘元君,等. 静态呼吸图法制备聚苯乙烯-b-聚(4-乙烯基) 吡啶蜂窝状多孔薄膜[J]. 江苏科技大学学报(自然科学版), 2018, 32(6): 855-860. [18] Wang Z Y, Liang S M , et al. Controlling structure and properties of polyamide nanofilms by varying amines diffusivity in organic phase[J]. Journal of Membrane Science, 2019, 574(none): 1-9. [19] Wu H, Zhang X F, Xu D, et al. Enhancing the interfacial stability and solvent-resistant property of PDMS/PES composite membrane by introducing a bifunctional aminosilane[J]. Journal of Membrane Science, 2009, 337(none): 61-69. [20] Freger, Viatcheslav. Swelling and Morphology of the Skin Layer of Polyamide Composite Membranes:? An Atomic Force Microscopy Study[J]. Environmental Science & Technology, 2004, 38(11): 3168-3175. [21] YAO B, ZHU Q, YAO L, et al. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth[J]. Applied Surface Science, 2015, 332(2): 87-94. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号