芳纶基OSN膜分离纯化大环内酯类药物分子的应用性能 |
作者:徐孙杰,沈 倩,罗立汉,许振良, 于佳瑶,曹 兰,崔玥晗,李 慧 |
单位: 化学工程联合国家重点实验室,化学工程研究所膜科学与工程研发中心,华东理工大学化工学院,上海 200237 |
关键词: 有机溶剂纳滤;芳纶;大环内酯抗生素;分离纯化 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2021,41(3):111-117 |
摘要: |
针对目前大环内酯类药物的分离纯化过程存在的问题,本文以三种典型的大环内酯类抗生素(红霉素、阿奇霉素和克拉霉素)为例,采用界面聚合法并结合三种改性方法构建了结构与性能各异的聚酰胺活性分离层,探讨了OSN膜样品的表面形貌、化学组成、孔径及润湿性,评估了大环内酯类药物纯化过程中膜样品对药物溶质的分离性能,讨论了改性方法对纯化过程的影响。实验结果表明芳纶基OSN膜对四种溶剂中的阿奇霉素、红霉素和克拉霉素的截留率分别达到99.9±0.0%(阿奇霉素/乙醇)、95.4±2.8%(红霉素/甲醇)、97.0±1.4%(红霉素/乙酸正丁酯)和99.8±0.0%(克拉霉素/丙酮),因而具有良好的应用前景。 |
On the basis of the present problems in the separation and purification process of macrolides, three typical macrolide antibiotics (erythromycin, azithromycin and clarithromycin) were used as examples in this paper. Active polyamide separation layers with different structures and properties were constructed by adopting interfacial polymerization and three modification methods. The surface morphology, chemical composition, pore size and wettability of aramid-based organic solvent nanofiltration (OSN) membrane samples were investigated. The separation performance of macrolides in the purification processes were evaluated. And the influence of modification methods on the purification process were discussed. The experimental results showed that the rejection of azithromycin, erythromycin and clarithromycin in four solvents were 99.9±0.0% (azithromycin/ethanol), 95.4±2.8%(erythromycin/methanol), 97.0±1.4% (erythromycin/butyl acetate) and 99.8±0.0% (clarithromycin/acetone), respectively. Therefore, aramid-based OSN membranes have the good potential application in the separation and purification process of macrolides. |
基金项目: |
国家自然科学基金项目(22078092,21978081和21808060)和教育部高校基本业务费项目(JKA012011001和JKA012011017) |
作者简介: |
徐孙杰(1990-),男,上海人,博士后,工学博士,主要从事OSN膜研发及溶剂体系分离过程研究 |
参考文献: |
[1] 赵伟斌. 大环内酯类药物治疗慢性鼻—鼻窦炎效果观察[J]. 临床合理用药,2020,13(4):47-48. [2] 郭 强,马淑涛. 大环内酯类抗生素糖基的结构修饰[J]. 中国抗生素杂志,2013,38(1):12-21. [3] 张建州. 阿奇霉素的合成工艺研究[J]. 广州化工. 2007,35(2):34-36. [4] 韩秋敏. 膜分离技术在药物分离纯化中的应用[J]. 化工管理,2018,5:90. [5] 张兆利,王 枢,王娇,等. 膜分离技术改进红霉素提取工艺[J]. 现代化工,2011,31(3):66-69. [6] Xia L,Ren J,Weyd M,et al. Ceramic-supported thin film composite membrane for organic solvent nanofiltration[J]. J Membr Sci,2018,563:857-863. [7] Marchetti P,Jimenez Solomon M F,Szekely G,et al. Molecular separation with organic solvent nanofiltration: a critical review[J]. Chem Rev,2014,114:10735-10806. [8] Liang Y,Li C,Li S,et al. Graphene quantum dots (GQD)-polyethyleneimine as interlayer for the fabrication of high performance organic solvent nanofiltration (OSN) membranes[J]. Chem Eng J,2020,380:122465. [9] Wang J,Zhao C,Wang T,et al. Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification[J]. RSC Adv,2016,6:82174-82185. [10] 范 馨,石颖欣,屠宝英,等. 用高效液相色谱法检测阿奇霉素糖浆中阿奇霉素含量的效果研讨[J]. 当代医药论丛. 2018,16(14):25-28. [11] Schmidt B,Barner-Kowollik C. Dynamic Macromolecular Material Design-The Versatility of Cyclodextrin-Based Host-Guest Chemistry[J]. Angew Chem Int Ed,2017,56:8350-8369. [12] Böcking A,Koleva V,Wind J,et al. Can the variance in membrane performance influence the design of organic solvent nanofiltration processes?[J]. J Membr Sci,2019,57:217-228. [13] 祝振鑫. 膜材料的亲水性、膜表面对水的湿润性和水接触角的关系[J]. 膜科学与技术. 2014,34(2):1-4. [14] Xu S,Shen Q,Tong Y,et al. GWF-NH2 enhanced OSN membrane with trifluoromethyl groups in polyamide layer for rapid methanol recycling[J]. Sep Purif Technol,2020,240:116619. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号