基于气体分离混合基质膜的界面调控 |
作者:陈隆,胡丹,冯旭东,刘烨,任小敏 |
单位: 北京工商大学,轻工科学技术学院,中国轻工业清洁生产和资源综合利用重点实验室,北京100048 |
关键词: 混合基质膜;界面调控;分离;渗透率;选择性 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2021,41(3):142-152 |
摘要: |
混合基质膜(MMMs)结合了传统有机膜材料和无机纳米材料的优势,突破了传统聚合物膜材料的渗透性与选择性之间的权衡限制,即“trade-off”效应,为高效的分离膜材料研究提供了新途径。但由于聚合物基体与纳米填料之间的相容性问题,往往在有机-无机相界面中形成空穴、僵化等非选择性缺陷。此文综述了MMMs常用的克服界面缺陷的调控技术,主要有聚合物基体的物化调控、纳米填料的物化调控、添加界面黏合剂以及后处理,并针对目前的调控方法提出存在的问题和展望,为高性能膜分离材料的制备方法提供新思路。 |
Mixed matrix membranes (MMMs) combine the advantages of traditional organic membranes and inorganic nanomaterials, and break the permeability-selectivity trade-off of traditional polymeric membranes, which providing a new way for efficient separation membrane materials. However, due to the compatibility between the polymer matrix and nano-fillers, non-selective defects as voids and rigidified polymer are often formed in the organic-inorganic interface. This paper reviews the commonly used approaches to MMM materials design to overcome the interfacial drawbacks, i.e., physical and chemical regulation of polymer matrix, physical and chemical modification of nano-filler, introduction of interfacial adhesive and post-treatment. The problems and prospects for the current regulating methods was presented providing some new ideas for the preparation of high-performance separation membrane materials. |
基金项目: |
科技创新服务能力建设-基本科研业务费(PXM2020_014213_000017);2020年研究生科研能力提升计划项目(19008020144) |
作者简介: |
陈隆(1996-),男,重庆江津人,工学硕士,从事膜分离技术、水处理技术 |
参考文献: |
[1]Ali Z, Al Sunbul Y, Pacheco F, et al. Defect-free highly selective polyamide thin-film composite membranes for desalination and boron removal[J]. J Membr Sci, 2019, 578: 85-94. [2]Zhou S, Wei Y, Li L, et al. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Sci Adv, 2018, 4(10): eaau1393. [3]Tamayo Marín J A, Londoño S R, Delgado J, et al. Biocompatible and antimicrobial electrospun membranes based on nanocomposites of chitosan/poly (vinyl alcohol)/graphene oxide[J]. Int J Mol Sci, 2019, 20(12): 2987. [4]Zhao D L, Japip S, Zhang Y, et al. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review[J]. Water Res, 2020, 173: 115557. [5]Yin J, Deng B. Polymer-matrix nanocomposite membranes for water treatment[J]. J Membr Sci, 2015, 479: 256-275. [6]瞿媛媛, 张玉龙, 张丛健,等. 改善MOFs/聚合物混合基质膜气体分离性能的策略[J]. 膜科学与技术, 2019, 39(2): 135-142. [7]Shindo R, Kishida M, Sawa H, et al. Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid[J]. J Membr Sci, 2014, 454: 330-338. [8]Dutta R C, Bhatia S K. Interfacial barriers to gas transport: probing solid-gas interfaces at the atomistic level[J]. Mol Simul, 2019, 45(14-15): 1148-1162. [9]Bera B, Das J K, Das N. Mesoporous silica based composite membrane formation by in-situ cross-linking of phenol and formaldehyde at room temperature for enhanced CO2 separation[J]. Microporous Mesoporous Mater, 2018, 256: 177-189. [10]Yu S, Li S, Huang S, et al. Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation[J]. J Membr Sci, 2017, 540: 155-164. [11]Dong G, Zhang Y, Hou J, et al. Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO2 capture[J]. Ind Eng Chem Res, 2016, 55(18): 5403-5414. [12]Zhang Q, Luo S, Weidman J R, et al. Preparation and gas separation performance of mixed-matrix membranes based on triptycene-containing polyimide and zeolite imidazole framework (ZIF-90)[J]. Polymer, 2017, 131: 209-216. [13]Ahmad N N R, Tan N I F Z, Leo C P, et al. Polysulfone-POSS membrane impregnated with ionic liquid for CO2 gas separation[J]. AIP Conf Proc, 2019, 2124(1): 030006. [14]Nguyen T H, Gong H, Lee S S, et al. Amine-appended hierarchical Ca-A zeolite for enhancing CO2 /CH4 selectivity of mixed-matrix membranes[J]. ChemPhysChem, 2016, 17(20): 3165-3169. [15]Lin R, Ge L, Liu S, et al. Mixed-matrix membranes with metal–organic framework-decorated CNT fillers for efficient CO2 separation[J]. ACS Appl Mater Interfaces, 2015, 7(27): 14750-14757. [16]Qian Q, Wu A X, Chi W S, et al. Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility[J]. ACS Appl Mater Interfaces, 2019, 11(34): 31257-31269. [17]Zhang N, Peng D, Wu H, et al. Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes[J]. J Membr Sci, 2018, 549: 670-679. [18]Tien-Binh N, Vinh-Thang H, Chen X Y, et al. Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes[J]. J Membr Sci, 2016, 520: 941-950. [19]Yu G, Zou X, Sun L, et al. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity[J]. Adv Mater, 2019, 31(15): e1806853. [20]Ahmad N N R, Leo C P, Ahmad A L. Effects of solvent and ionic liquid properties on ionic liquid enhanced polysulfone/SAPO-34 mixed matrix membrane for CO2 removal[J]. Microporous Mesoporous Mater, 2019, 283: 64-72. [21]Wang Z, Wang D, Zhang S, et al. Interfacial design of mixed matrix membranes for improved gas separation performance[J]. Adv Mater, 2016, 28(17): 3399-3405. [22]Ghasemi Estahbanati E, Omidkhah M, Ebadi Amooghin A. Interfacial design of ternary mixed matrix membranes containing pebax 1657/silver-nanopowder/[BMIM][BF4] for improved CO2 separation performance[J]. ACS Appl Mater Interfaces, 2017, 9(11): 10094-10105. [23]Ng W H, Ahmad N N R, Leo C P, et al. Polysulfone/SAPO-34 zeolite membrane impregnated with 1-ethyl-3-methyl imidazolium bis(tri-fluoromethylsulfonyl)imide ionic liquid for CO2 removal[J]. AIP Conf Proc, 2019, 2124(1): 030004. [24]Aroon M A, Ismail A F, Matsuura T, et al. Performance studies of mixed matrix membranes for gas separation: A review[J]. Sep Purif Technol, 2010, 75(3): 229-242. [25]Shimekit B, Mohd Shariff A, Mukhtar H, et al. Interfacial defects on mixed matrix membranes and mitigation techniques for gas separation: A review[J]. Appl Mech Mater, 2014, 625: 653-656. [26]吴星宇. 固有孔高分子杂化膜界面形态调控及改进Maxwell模型[D]. 天津: 天津大学, 2018. [27]马京. 纳米多孔材料混合基质膜制备及分离性能研究[D]. 北京: 北京化工大学, 2017. [28]Moore T T, Koros W J. Non-ideal effects in organic–inorganic materials for gas separation membranes[J]. J Mol Struct, 2005, 739(1-3): 87-98. [29]Bouma R H B, Checchetti A, Chidichimo G, et al. Permeation through a heterogeneous membrane: The effect of the dispersed phase[J]. J Membr Sci, 1997, 128(2): 141-149. [30]Maruf S H, Ahn D U, Pellegrino J, et al. Correlation between barrier layer Tg and a thin-film composite polyamide membrane's performance: Effect of chlorine treatment[J]. J Membr Sci, 2012, 405-406: 167-175. [31]Smith Z P, Bachman J E, Li T, et al. Increasing M2(dobdc) loading in selective mixed-matrix membranes: A rubber toughening approach[J]. Chem Mater, 2018, 30(5): 1484-1495. [32]田洋洋, 梁家晨, 沈钦,等. MOF基混合基质膜的界面设计及气体分离研究进展[J]. 膜科学与技术, 2019, 39(1): 129-139. [33]李猛, 姚宇健, 张轩,等. 薄层复合膜的纳米改性:设计、制备及应用[J]. 化工进展, 2019, 38(1): 365-381. [34]Lv Y, Ma L, Svec F, et al. Engineering of filler/polymer interface in metal‐organic framework‐based mixed‐matrix membranes to enhance gas separation[J]. Chem–Asian J, 2019, 14(20): 1-13. [35]Kim S, Pechar T W, Marand E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation[J]. Desalination, 2006, 192(1-3): 330-339. [36]赵海洋. 碳基纳米材料填充混合基质反渗透膜的制备及构效关系研究[D]. 杭州: 浙江大学, 2015. [37]Laghaei M, Sadeghi M, Ghalei B, et al. The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes: Polyethersulfone/MCM-41[J]. J Membr Sci, 2016, 513: 20-32. [38]丁金姿, 冯爱玲, 李晓东,等. 功能化石墨烯复合材料及其在生物传感器中的应用[J]. 功能材料, 2020, 51(9): 9056-9065. [39]Wang Z, Ren H, Zhang S, et al. Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation[J]. J Mater Chem A, 2017, 5(22): 10968-10977. [40]张正德, 谈蒙露, 任翠兰,等. VaspCZ:一个提高效率的VASP计算辅助程序[J]. 核技术, 2020, 43(3): 34-40. [41]Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186. [42]Wang Z, Guo S, Zhang B, et al. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination[J]. J Membr Sci, 2019, 592: 117375. [43]Venna S R, Lartey M, Li T, et al. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles[J]. J Mater Chem A, 2015, 3(9): 5014-5022. [44]周勇, 王恕皆, 高从堦. 一种新型二氧化钛掺杂纳滤膜的制备方法[P]. 浙江, CN105664731A. 2016-06-15. [45]李皓, 杜乃旭, 杨凯,等. Cu-BTC/乙基纤维素混合基质膜的快速制备及气体分离性能[J]. 化工进展, 2016, 35(12): 3970-3975. [46]Lv Y, Du Y, Qiu W Z, et al. Nanocomposite membranes via the codeposition of polydopamine/polyethylenimine with silica nanoparticles for enhanced mechanical strength and high water permeability[J]. ACS Appl Mater Interfaces, 2017, 9(3): 2966-2972. [47]Rajaeian B, Rahimpour A, Tade M O, et al. Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles[J]. Desalination, 2013, 313: 176-188. [48]Tan P C, Ooi B S, Ahmad A L, et al. Formation of a defect-free polyimide/zeolitic imidazolate framework-8 composite membrane for gas separation: in-depth analysis of organic-inorganic compatibility[J]. J Chem Technol Biotechnol, 2019, 94(9): 2792-2804. [49]王志, 许瑞, 董松林,等. 通过化学桥联制备用于二氧化碳分离的混合基质膜的方法[P]. 天津, CN109248571B. 2019-11-01. [50]Vu M T, Lin R, Diao H, et al. Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes[J]. J Membr Sci, 2019, 587: 117157. [51]Li Q, Liao Z, Xie J, et al. Enhancing nanofiltration performance by incorporating tannic acid modified metal-organic frameworks into thin-film nanocomposite membrane[J]. Environ Res, 2020, 191: 110215. [52]徐又一, 蒋金泓, 朱利平,等. 多巴胺的自聚-附着行为与膜表面功能化[J]. 膜科学与技术, 2011, 31(3): 32-38. [53]李壹竹, 宋伟龙, 李之鹏,等. 等离子体引发表面两性离子化制备抗污染性PVDF膜[J]. 膜科学与技术, 2018, 38(2): 29-36. [54]Dong L, Chen M, Wu X, et al. Multi-functional polydopamine coating: simultaneous enhancement of interfacial adhesion and CO2 separation performance of mixed matrix membranes[J]. New J Chem, 2016, 40(11): 9148-9159. [55]Askari M, Chung T S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. J Membr Sci, 2013, 444: 173-183. [56]Hao L, Liao K S, Chung T S. Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance[J]. J Mater Chem A, 2015, 3(33): 17273-17281. Song Q, Cao S, Pritchard R H, et al. Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes[J]. J Mater Chem A, 2016, 4(1): 270-279. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号