温度响应性多孔膜的构建及分离性能研究 |
作者:杨培元,董亮亮,王逸,施冬健,倪忠斌,陈明清 |
单位: 江南大学合成与生物胶体教育部重点实验室,化学与材料工程学院,无锡 214122 |
关键词: PET支撑膜;聚多巴胺;温度响应;分离 |
DOI号: |
分类号: TQ028.4 |
出版年,卷(期):页码: 2021,41(4):49-56 |
摘要: |
通过“graft-to”策略将巯基封端的聚N-异丙基丙烯酰胺(PNIPAM-SH)接枝到涂覆有聚多巴胺(PDA)的聚酯(PET)支撑膜上,制备具有温度响应性的多孔分离膜。通过核磁共振波谱仪(1H NMR)和紫外可见分光光度计(UV-vis)研究了PNIPAM的结构、分子量等与温度响应性能之间的内在联系。结果表明,以分子量为8400 g/mol的PNIPAM聚合物构筑的多孔膜的温度响应性最为明显,对油水混合物的分离效果最优,达95%以上。制备的膜对水包油乳液也展现出良好的分离性能有望应用于油水分离领域。 |
The sulfhydryl-terminated poly(N-isopropylacrylamide)(PNIPAM-SH) was grafted onto a polyester(PET) support membrane coated with polydopamine (PDA) through the “graft-to” strategy to prepare a temperature-responsive porous separation membrane. The internal relationship between the structure, molecular weight of PNIPAM and temperature response performance was studied by nuclear magnetic resonance spectrometer (1H NMR) and ultraviolet-visible spectrophotometer (UV-vis). The results show that the temperature responsiveness of the porous membrane constructed by the PNIPAM polymer with a molecular weight of 8400 g/mol is the most obvious, and the separation effect of the oil-water mixture is the best, reaching more than 95%. The prepared membrane also shows good separation performance for oil-in-water emulsions, which can be expected to be applied in the field of oil-water separation. |
基金项目: |
江南大学研究生科研与实践创新计划项目(JNSJ19_003)资助课题 |
作者简介: |
杨培元(1996-),男,福建泉州人,硕士,主要从事功能膜材料研究。JN6180608021@163.com |
参考文献: |
[1] 杨思民, 王建强, 刘富. 油水分离膜研究进展[J]. 膜科学与技术, 2019, 39(3): 132-141. [2] Zhang Z B, Yu H, Guo J H, et al. pH-Responsive smart non-woven fabrics (NWFs) with double switchable wettability between superhydrophilicity–superhydrophobicity–superhydrophilicity to oil/water separation[J]. New J Chem, 2019, 43(17): 6712-6720. [3] Lin X, Huang R and Ulbricht M. Novel magneto-responsive membrane for remote control switchable molecular sieving[J]. J Mater Chem B, 2016, 4(5): 867-879. [4] Meng J Q, Cao Z, Ni L, et al. A novel salt-responsive TFC RO membrane having superior antifouling and easy-cleaning properties[J]. J Membr Sci, 2014, 461: 123-129. [5] Tripathi B P, Dubey N C, Simon F, et al. Thermo responsive ultrafiltration membranes of grafted poly(N-isopropyl acrylamide) via polydopamine[J]. RSC Adv, 2014, 4(64): 34073-34083. [6] Ge M Z, Cao C N, Huang J Y, et al. Rational design of materials interface at nanoscale towards intelligent oil–water separation[J]. Nanoscale Horiz, 2018, 3(3): 235-260. [7] Dutta K and De S, Smart responsive materials for water purification: an overview[J]. J Mater Chem A, 2017, 5(42): 22095-22112. [8] Gao J, Luo P, Yan X Y, et al. Temperature-sensitive poly(N-isopropylacrylamide)-reduced graphene oxide/polysulfone as smart separation membrane: structure and performance[J]. Iran Polym J, 2018, 27: 951-963. [9] Ou R W, Wei J, Jiang L, et al. Robust thermoresponsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil-water separation[J]. Environ Sci Technol, 2016, 50(2): 906-914. [10] Gu J C, Xiao P, Huang Y J, et al. Controlled functionalization of carbon nanotubes as superhydrophobic material for adjustable oil/water separation[J]. J Mater Chem A, 2015, 3(8): 4124-4128. [11] 韦洪波, 谢锐, 巨晓洁, 等. 温度响应型智能开关膜的“开/关”长效性研究[J]. 膜科学与技术, 2014, 34(4): 20-25. [12] Li P F, Xie R, Fan H, et al. Regulation of critical ethanol response concentrations of ethanol-responsive smart gating membranes[J]. Ind & Eng Chem Res, 2012, 51(28): 9554-9563. [13] Pan K, Fang P, Cao B. Novel composite membranes prepared by interfacial polymerization on polypropylene fiber supports pretreated by ozone-induced polymerization[J]. Desalination, 2012, 294: 36-43. [14] Vasilica P, Augustin M, Ovidiu C, et al. Tinctorial response of recycled PET fibers to chemical modifications during saponification and aminolysis reactions[J]. Ind & Eng Chem Res, 2014, 53: 16652-16663. [15] Zhang C, Ou Y, Lei W X, et al. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angew Chem Int Ed Engl, 2016, 55(9): 3054-3057. [16] Ma Y M, Wei D X, Yao H, et al. Synthesis, characterization and application of thermoresponsive polyhydroxyalkanoate-graft-poly(N-isopropylacrylamide)[J]. Biomacromolecule, 2016, 17(8): 2680-2690. [17] Furyk S, Zhang Y J, Ortiz-Acosta D, et al. Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide)[J]. J Polym Sci Part A: Polym Chem, 2006, 44(4): 1492-1501. [18] Kollarigowda R H, Abraham S and Montemagno C D. Antifouling cellulose hybrid biomembrane for effective oil/water separation[J]. ACS Appl Mater Inter, 2017, 9(35): 29812-29819. [19] Zhang W F, Liu N, Zhang Q D, et al. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability[J]. Angew Chem Int Ed Engl, 2018, 57(20): 5740-5745. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号