D-氨基酸改性HNTs/PAN杂化膜的制备及其超滤性能研究 |
作者:臧鹏,刘峤,范茏,徐农,董强,丁爱琴 |
单位: 合肥学院 能源材料与化工学院,合肥 230601 |
关键词: 聚丙烯腈、杂化膜、埃洛石纳米管、D-氨基酸、复合材料 |
DOI号: |
分类号: TQ325.8 |
出版年,卷(期):页码: 2021,41(4):73-83 |
摘要: |
为了提高聚丙烯腈(PAN)超滤膜的亲水性、水通量以及抗污染能力,以埃洛石纳米管(HNTs)为原料,通过聚多巴胺黏附D-氨基酸,制备埃洛石-聚多巴胺-D-氨基酸(HDD)复合材料。然后以聚丙烯腈(PAN)为基体,HDD为添加剂,制备了HDD/PAN杂化膜。借助XRD、TEM/SEM、FTIR、AFM、接触角等仪器和测量方式,研究HDD/PAN杂化膜的微观形貌、化学结构、亲水性能和抗污染性能。结果表明:改性使得D-氨基酸成功附着在HNTs表面,提高了HDD与PAN的相容性,不但使膜具有较粗糙的皮层和更大的指状孔,还进一步提高了膜的超滤性能;其中,HDD添加量为5 wt%时,其水接触角最小,且纯水通量、BSA溶液过滤通量以及BSA截留率分别高达1334.21L/(m2·h)、61.29 L/(m2·h)、97.71%。 |
A composite was prepared by dopamine adhering D-amino acid to the outer surface of Halloysite Nanotubes (HNTs). The composite (HNTs-dopamine-D-amino acid, HDD) was added in situ by the method of non-solvent induced phase separation (NIPS) with Polyacrylonitrile (PAN) as the matrix. The effects of HDD on the micromorphology, hydrophilic property, chemical structure and filtration performance of the HDD/PAN hybrid membrane were investigated by XRD, TEM, SEM, AFM and FTIR etc. The results showed that DAA was grafted on the surface of HNTs due to the adhesion of polydopamine. The D-amino acid (DAA) promoted dispersion of the HDD in the PAN matrix, increased surface roughness and vertical finger-like holes in the membrane. The additive (HDD) improved the hydrophilic property and anti-fouling performance of the hybrid membrane. It was found that with HDD content of 5 wt% the membrane exhibited the lowest contact angle, the maximum pure water flux of 1334.21L/(m2·h), the BSA solution flux of 61.29 L/( m2·h) and the BSA rejection as high as 97.71%. |
基金项目: |
安徽省教育厅重点项目(KJ2020A0669);安徽省重点研究和开发计划项目(201904a05020077);合肥学院人才基金(18-19RC15, 18-19RC16, 18-19RC19) |
作者简介: |
臧鹏(1997-),男,江苏宿迁人,硕士生,研究方向为膜材料科学与技术,E-mail:1370384303@qq.com |
参考文献: |
[1]成芃荣, 周云超. 膜分离技术在饮用水处理中的应用综述[J]. 广州化工, 2020, 48(14):25-26+30. [2]孙久义. 我国膜分离技术综述[J]. 当代化工研究, 2019, (02):27-28. [3]Qiao Liu, Nong Xu, Long Fan, et al. Polyacrylonitrile (PAN)/TiO 2 mixed matrix membrane synthesis by thermally induced self-crosslinking for thermal and organic-solvent resistant filtration[J]. Chemical Engineering Science, 2020, 228 :115993. [4]Lebea N. Nthunya, Leonardo Gutierrez,Sebastiaan Derese, Bhekie B. Mamba, et al. Adsorption of phenolic compounds by polyacrylonitrile nanofibre membranes: A pretreatment for the removal of hydrophobic bearing compounds from water[J]. Journal of Environmental Chemical Engineering, 2019, 7(4):103254. [5]Jegan Stella Beril Melbiah, Pramila Joseph, Dipak Rana, et al. Customized antifouling polyacrylonitrile ultrafiltration membranes for effective removal of organic contaminants from aqueous stream[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(3):5833. [6]王辉, 崔梦冰, 闫冬冬, 等. 添加剂对聚丙烯腈膜结构和性能的影响[J]. 材料导报, 2018, 32(04):555-558. [7]Palaniswamy Suresh Kumar, Kanagaraj Venkatesh, Ee Ling Gui, Sundaramurthy Jayaraman, et al. Electrospun carbon nanofibers/TiO 2 -PAN hybrid membranes for effective removal of metal ions and cationic dye[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 366-376. [8]J.S. Beril Melbiah, D. Nithya, D. Mohan. Surface modification of polyacrylonitrile ultrafiltration membranes using amphiphilic Pluronic F127/CaCO 3 nanoparticles for oil/water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516: 147-160. [9]刘明贤, 何瑞, 杨景, 等. 埃洛石纳米管及其复合材料[C]// 2016年全国矿物科学与工程学术研讨会. 中国硅酸盐学会. 2016. [10]赵晴, 何少剑, 林俊, 等. 改性埃洛石纳米管/Pebax1657杂化膜的制备及其气体分离性能[J]. 石油化工, 2019, 48(11):1114-1120. [11]Liu Zan, Qin Xixi, Qin Dunzhong, et al. Preparation and Mechanical Properties of PAN/HNTs Composite Nanofibers[J]. China Petroleum Processing & Petrochemical Technology, 2017, 19(01):92-98. [12]Xiaoyan Guo, Shougang Fan, Yandi Hu, et al. A novel membrane biofouling mitigation strategy of D-amino acid supported by polydopamine and halloysite nanotube[J]. Journal of Membrane Science, 2019, 579:131-140. [13]Stephen Hillier, Rik Brydson, Evelyne Delbos, et al. Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs)[J]. Clay Minerals, 2016, 51(3): 325-350. [14]Majed M. Alghamdi, Adel A. El‐Zahhar. Novel cellulose acetate propionate‐halloysite composite membranes with improved permeation flux, salt rejection, and antifouling properties[J]. Polymers for Advanced Technologies, 2020, 31(11): 2526-2534. [15]Qianqian Wang, Jiuyun Cui, Siwei Liu, et al. Facile preparation of halloysite nanotube-modified polyvinylidene fluoride composite membranes for highly efficient oil/water emulsion separation[J]. Springer US, 2019, 54(11): 8332-8345. [16]Qiao Liu, Lin Li, Zonglin Pan, et al. Inorganic nanoparticles incorporated in polyacrylonitrile‐based mixed matrix membranes for hydrophilic, ultrafast, and fouling‐resistant ultrafiltration[J]. Journal of Applied Polymer Science, 2019, 136(33):47902. [17]Hao Yang,Hong Wu, Fusheng Pan, Meidi Wang, et al. Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks[J]. Chinese Journal of Chemical Engineering, 2020, 28(01):90-97. [18]Noormohamadi Amin, Homayoonfal Maryam, Mehrnia Mohammad Reza, et al. Employing magnetism of Fe3O4 and hydrophilicity of ZrO2 to mitigate biofouling in magnetic MBR by Fe3O4-coated ZrO2/PAN nanocomposite membrane [J]. Environmental technology, 2020, 41(20): 2683-2704. [19]Amanda Grylewicz, Sylwia Mozia. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: a review[J]. Separation and Purification Technology, 2021. 256:117827. [20]张芷铭, 邢瑞思, 吴洪, 等. 埃洛石纳米管掺杂海藻酸复合膜制备及其渗透蒸发脱水研究[J]. 膜科学与技术, 2020, 40(01):45-52. [21]Chehrazi Ehsan, Sharif Alireza, Karimi Mohammad. Rational Design of Halloysite Surface Chemistry for High Performance Nanotube-Thin Film Nanocomposite Gas Separation Membranes [J]. ACS applied materials & interfaces, 2020, 12(33):37527-37537. [22]Shinyun Park,Eunmok Yang, Hosik Park, Heechul Choi. Fabrication of functionalized halloysite nanotube blended ultrafiltration membranes for high flux and fouling resistance[J]. Environmental Engineering Research, 2020, 25(5): 771-778. [23]Zhao Jing Ming, Chang Jeong Ho, Lee Youn Ki, et al. Separation of Halloysite Nano Tubes (HNTs) by Homogenization of Quartz Contaminated Kaolins.[J]. Journal of nanoscience and nanotechnology, 2019, 19(2): 984-987. [24]程志林, 孙伟. 埃洛石纳米硅铝管(HNTs)的结构和物理性能[J]. 石油学报(石油加工), 2016, 32(01):150-155. [25]胥聪敏, 王文渊, 刘利, 等. D-氨基酸对混合菌生物腐蚀的缓蚀行为影响分析[J]. 天然气工业, 2021, 41(02):160-170. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号