多孔陶瓷外膜孔径对烟气中水热回收性能的影响
作者:曹钦丰1,孟庆莹1,季超1,牛淑锋2,李丽2,漆虹1
单位: 1南京工业大学膜科学技术研究所,材料化学工程国家重点实验室,江苏 南京 210009;2翃翌陶瓷膜研究院,南京翃翌陶瓷纳滤膜有限公司,江苏 南京 210009
关键词: 陶瓷膜;平均孔径;烟气脱湿;膜冷凝
DOI号:
分类号: TQ 174.9
出版年,卷(期):页码: 2021,41(4):102-109

摘要:
 采用不同平均孔径(5、10、20、50 nm)的管式陶瓷外膜,以模拟烟气进行膜冷凝实验。考察了进气流量和进气温度对陶瓷外膜冷凝过程中水、热回收性能的影响,分析了膜平均孔径对冷凝过程中水、热回收性能的影响。结果表明:在相同工况下,陶瓷外膜冷凝过程中的水、热回收性能按照膜平均孔径的大小排序如下:5 nm < 10 nm ≈ 50 nm < 20 nm。其中,平均孔径为20 nm的管式陶瓷外膜的水、热回收性能最优,其最大过程水通量和水回收率分别为21.5 kg·m-2·h-1和66.0 %;其最大热通量和热回收率分别为47.2 MJ·m-2·h-1和41.2 %。
 The tubular outer-coated ceramic membrane with average pore size of 5,10,20 and 50 nm were used to test the performance of ceramic membrane condensers by using simulated flue gas. Effects of air flow rate,inlet gas temperature and average pore sizes of membrane on water and heat recovery performance during membrane condensation were investigated. Results showed that water and heat recovery performance of ceramic membranes followed the tendency of 5 nm <10 nm ≈ 50 nm < 20 nm. In this work, ceramic membranes with the average pore size of 20 nm exhibited the optimized water and heat recovery as follow : water flux and water recovery were 21.5 kg·m-2·h-1 and 66.0 %, respectively. Heat flux and heat recovery were 47.2 kg·m-2·h-1 and 41.2 %, respectively. 

基金项目:
国家自然科学基金项目(21490581);中国石油化工股份有限公司资助项目(317008-6)

作者简介:
曹钦丰(1995-),男,江苏镇江人,硕士生,主要从事陶瓷膜的制备及烟气中水、热回收研究

参考文献:
 [1] 2018中国水资源公报[EB/OL].
http://www.mwr.gov.cn/sj/tjgb/szygb/201907/t20190712_1349118.html.
[2] Shi W, Lin C, Chen W, et al. Environmental effect of current desulfurization technology on fly dust emission in China[J]. Renewable & Sustainable Energy Reviews, 2017, 72: 1-9.
[3] 赵钦新, 苟远波. 凝结换热与冷凝式锅炉原理及应用(续完)[J]. 工业锅炉, 2013, (2): 1-7.
[4] 汪洋. 燃煤电站锅炉烟气余热与水分联合回收技术展望与分析[J]. 发电与空调, 2012, 33(2): 26-28.
[5] Levy E, Bilirgen H, Jeong K, et al. Recovery of water from boiler flue gas[R]. United States: Gas Technology Institute, 2008.
[6] Drioli E, Santoro S, Simone G et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser[J]. Reactive and Functional Polymers, 2014, 79: 1-7.
[7] Macedonio F, Mirko F, Barbieri G, et al. Recovery of water and contaminants from cooling tower plume[J], Environmental Engineering Research, 2018, 192.
[8] Bruntti A, Macedonio F, Barbieri G, et al Membrane condenser as emergingtechnology for water recovery and gas pretreatment: current status and perspectives[J],BMC Chemical Engineering, 2019.
[9] Bao A, Wang D X, Lin C X, et al. Nanoporous membrane tube condensing heat transfer enhancement study[J]. International Journal of Heat and Mass Transfer, 2015, 84: 456-462.
[10] Soleimanikutanaei S, Lin C X, Wang D X. Modeling and simulation of cross-flow transport membrane condenser heat exchangers[J]. International Communications in Heat & Mass Transfer, 2018, 95: 92-97.
[11] Soleimanikutanaei S, Lin C X, Wang D X, Numerical modeling and analysis of transport membrane condensers for waste heat and water recovery from flue gas[J]. International Journal of Thermal Sciences, 2019, 136: 96-106.
[12] Tu T, Cui Q F, Liang F H, et al. Water recovery from stripping gas overhead CO2 desorber through air cooling enhanced by transport membrane condensation [J]. Separation And Purification Technology, 2019, 215:625-633.
[13] Hu H W, Tang G H, Niu D, et al. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J]. Scientific Reports, 2016, 6: 27274.
[14] Yue M, Zhao S F, Feron P H M, et al. Multichannel Tubular Ceramic Membrane for Water and Heat Recovery from Waste Gas Streams[J]. Industrial & Engineering Chemistry Research, 2016, 55(9): 2615-2622.
[15] 孟庆莹, 曹语,漆虹等,过程参数对采用多孔陶瓷超滤膜回收烟气中余热和水性能的影响[J], 化工学报, 2018, 6: 2519–2525.
[16] 曹语,季超,漆虹等,陶瓷膜冷凝器用于烟气脱白烟过程的中试研究[J],化工学报, 2019, 70(6): 2192-2201.
[17] Deinert M R, Parlange J Y. Effect of pore structure on capillary condensation in a porous medium[J]. Physical Review E, 2009, 79: 021202.
[18] Wang D X, Bao A, Kunc W, et al. Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91: 341-348.
[19] Yan S P, Cui Q F, Xu L Q, et al. Reducing CO2 regeneration heat requirement through waste heat recovery from hot stripping gas using nanoporous ceramic membrane [J]. International Journal of Greenhouse Gas Control, 2019, 82: 269-280.
[20] Yang B, Chen H P, Ye C, et al. Experimental study on differences of heat and mass flux between 10-and 50-nm pore-sized nano-porous ceramic membranes [J]. Journal of Australian Ceramic Society, 2019, 55(2): 343-354.
[21] Kim J F, Park A, Kim S, et al. Harnessing Clean Water from Power Plant Emissions Using Membrane Condenser Technology[J]. ACS Sustainable Chemistry & Engineering, 2018, 5: 6425-6433.
[22] Chen H P, Zhou Y N, Su X, et al. Experimental study of water recovery from flue gas using hollow micro-nano porous ceramic composite membranes[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 349-355.
[23] Che D F, Da Y D, Zhuang Z N, et al. Heat and mass transfer characteristics of simulated high moisture flue gases[J]. Heat & Mass Transfer, 2005, 41(3): 250-256.
[24] Sijbesma H, Nymeijer K, Heijboer R, et al. Flue gas dehydration using polymer Membranes[J]. Journal Membrane Science, 2008, 313(1): 263-276. 
[25] Lin H, Thompson S M, Serbanescu-Martin, et al. Dehydration of natural gas using membranes. Part I: Composite membranes[J]. Journal Membrane Science, 2012, 413: 70-81.
[26] Cao J Y, Pan J, Cui Z L, et al. Improving efficiency of PVDF membranes for recovering water from humidified gas streams through membrane condenser[J]. Chemical Engineering Science, 2019, 210: 115234.
[27] Li Z H, Zhang H, Chen H P, et al. Water vapor capture using microporous ceramic membrane[J]. Desalination, 2020, 482: 114405.
[28] Chen C, Liang D H, Zhang Y T, et al. Pilot-scale study on flue gas moisture recovery in a coal-fired power plant[J] Separation and Purification Technology, 2021, 254: 117254
[29] Zolfaghari A, Dehghanpour H, Holyk J. Water sorption behaviour of gas shales: I. Role of clays[J]. International Journal of Coal Geology, 2017, 179: 130-138.
[30] Zolfaghari A, Dehghanpour H, Xu M. Water sorption behaviour of gas shales: II. Pore size distribution[J]. International Journal of Coal Geology, 2017, 179: 187-195.
[31] Zou D, Ke X, Qiu M, et al. Design and fabrication of whisker hybrid ceramic membranes with narrow pore size distribution and high permeability via co-sintering process[J]. Ceramics International, 2018, 44(17): 21159-21169.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号