反离子对磺化杂萘联苯共聚醚砜纳滤膜性能的影响
作者:唐金金,张守海,王丹慧,徐培琦,徐树刚,蹇锡高
单位: 大连理工大学化工学院,辽宁省高性能树脂工程技术研究中心,辽宁省高分子科学与工程重点实验室,大连市膜材料与膜过程重点实验室,辽宁 大连 116024
关键词: 磺化杂萘联苯聚醚砜;反离子;复合纳滤膜;水通量;脱盐率
DOI号:
分类号: TQ 326.55;TB 324
出版年,卷(期):页码: 2021,41(5):65-72

摘要:
 将磺化杂萘联苯共聚醚砜浸泡于盐溶液中制备得到磺酸盐型杂萘联苯共聚醚砜(SPPBES-M),对其进行FT-IR和TGA表征。SPPBES-M的5%热失重温度高于489 ℃,具有优异的热稳定性。采用涂覆法制备SPPBES-M/PPBES复合纳滤膜,考察了浸涂液中SPPBES-M浓度、反离子种类、热处理温度以及热处理时间对复合纳滤膜性能的影响。结果表明,随着反离子(Li+、Na+和K+)离子半径增大,SPPBES-M/PPBES复合膜的通量由29 L/(m2·h)增加到36 L/(m2·h),其脱盐率由65%降低至58%;随着热处理时间和热处理温度升高,复合膜的水通量降低而脱盐率升高,当热处理时间由10min延长至40min,SPPBES-100-K/PPBES复合膜的脱盐率由62%提高至83%。
 Sulfonated copoly(phthalazinone biphenyl ether sulfone) substituted by counterions (SPPBES-M) were prepared from sulfonated copoly(phthalazinone biphenyl ether sulfone) (acid form) immersing in salt solutions. SPPBES-M were characterized by FT-IR and TGA. The 5% decomposition temperature of SPPBES-M was higher than 489 ℃, and SPPBES-M had excellent thermal stability. SPPBES-M/PPBES composite nanofiltration membranes were prepared by coating method. The effects of SPPBES-M concentration, counterions, curing treatment temperature, and curing treatment time on the performance of composite nanofiltration membranes were investigated. The rejection of composite membrane decreased from 65% to 58%, and the flux increased from 29 L/(m2·h) to 36 L/(m2·h) with the increase of the radius of counterions (Li+、Na+ and K+). With the increase of curing treatment temperature and time, the water flux of SPPBES-100-M/PPBES composite membranes were decreased, and the rejection were increased. When the curing treatment time extended from 10min to 40min, the rejection enhanced from 62% to 83%.

基金项目:
国家重点研发计划项目(2017YFB0307600),国家自然科学基金委创新研究群体项目(22021005),辽宁省‘兴辽英才计划’项目(XLYC1802073),大连市高层次人才创新支持计划(2019RD08)。

作者简介:
唐金金(1996-),女,辽宁省北镇市,硕士,从事磺化杂萘联苯聚醚砜纳滤膜的研究,E-mail:tangjin@mail.dlut.edu.cn

参考文献:
 [1] 石紫, 王志, 王宠, 等. 染料分离有机纳滤膜制备技术研究进展[J]. 膜科学与技术, 2020, 40(01): 340-351. 
[2] Guo S, Wan Y, Chen X, et al. Loose nanofiltration membrane custom-tailored for resource recovery[J]. Chem Eng J, 2021, 409: 127376.
[3] Ji Y, Qian W, Yu Y, et al. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chinese J Chem Eng, 2017, 25(11): 1639-1652. 
[4] Qin D, Huang G, Terada D, et al. Nanodiamond mediated interfacial polymerization for high performance nanofiltration membrane[J]. J Membr Sci, 2020, 603: 118003. 
[5] 秦爱文, 杨炎福, 何云龙, 等. 海泡石改性聚醚砜膜的制备及性能[J]. 膜科学与技术, 2020, 204(05): 74-80. 
[6] Ahmad A, Abdulkarim A, Ooi B. et al. Recent development in additives modifications of polyethersulfone membrane for flux enhancement[J]. Chem Eng J, 2013, 223(5): 246-267. 
[7] Muthumeenal A, Neelakandan S, Kanagaraj P, et al. Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications[J]. Renew Energ, 2016, 86: 922-929.
[8] 观姗姗, 张守海, 王晓丽, 等. 耐氯性能优良的磺化杂萘联苯聚醚砜复合纳滤膜[J]. 膜科学与技术, 2013, 4(33): 17-22. 
[9] 王榛麟, 张守海, 蹇锡高, 等. 磺化杂萘联苯共聚醚砜/聚醚砜复合纳滤膜的制备[J]. 水处理技术, 2017, 43(01): 17-21. 
[10] Chen Y, Zhang S, Liu Q, et al. The effect of counter-ion substitution on poly(phthalazinone ether ketone) amphoteric ion exchange membranes for vanadium redox flow battery[J]. J Membr Sci, 2021, 620, 118816. 
[11] Pérez-Pérez M, Suleiman D. Transport properties of sulfonated poly(ether ether ketone) membranes with counter-ion substitution[J]. J Membr Sci, 2015, 493: 414-427. 
[12] Hamad F, Chowdhury G, Matsuura T. Sulfonated polyphenylene oxide-polyethersulfone thin-film composite membranes[J]. J Membr Sci, 2001, 191(13): 71-83.
[13] 张守海, 邵萃, 曾圣达, 等. 杂萘联苯共聚醚砜的磺化[J]. 功能材料, 2012, 41(5): 874-877. 
[14] Xie T, Zhao H, Lv Z, et al. A highly active composite electrocatalyst Ni-Fe-P-Nb2O5 / NF for overall water splitting[J]. Int J Hydrogen Energ, 2020, 46(01): 581-588. 
[15] Zhu X, Yang Z, Gan Z, et al. Toward tailoring nanofiltration performance of thin-film composite membranes, Novel insights into the role of poly(vinyl alcohol) coating positions[J]. J Membr Sci, 2020, 614(15): 118526. 
[16] Bas C, Reymond L, Anne-sophie Danérol, et al. Key counter ion parameters governing polluted nafion membrane properties[J]. J Polym Sci Part B Polym Phys, 2010, 47(14): 1381-1392.
[17] Chen L, Zhang S, Jiang Y, et al. Preparation and characterization of sulfonated poly(aryl ether ketone) containing 3,5-diphenyl phthalazinone moieties for proton exchange membrane[J]. RSC Adv, 2016, 6: 75328–75335.
[18] Kim Y, Park H, Lee Y. Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties[J]. J Membr Sci, 2003, 226(1-2): 145-158.
[19] Farideh Z, Rozita M. M, Saeid R, et al. Preparation of thin film composite nano-filtration membranes for brackish water softening based on the reaction between functionalized UF membranes and polyethyleneimine[J]. J Membr Sci, 2019, 588, 117207.
[20] 杜圣羽, 孙佳楠, 孙璐, 等. 基于温度梯度变化热处理对聚酰胺复合膜性能的影响的研究[J]. 新型工业化, 2019, 009(010): 63-67.
[21] Shi Y, Wang X, Chen G, et al. Preparation and characterization of high erformance dehydrating pervaporation alginate membranes[J]. J Appl Polym Sci, 1998, 68(6): 959-968.
[22] Gong G, Wang P, Zhou Z, et al. New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane[J]. ACS Appl Mater Interf, 2019, 11(7): 7349-7356.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号