ZIF-93/Pebax 2533混合基质膜的制备及其CO2/N2分离性能研究
作者:谢亚芳,金 花,李砚硕
单位: 宁波大学 材料科学与化学工程学院,宁波?315211
关键词: ZIF-93/Pebax 2533混合基质膜;非对称结构;CO2/N2分离
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2021,41(5):79-86

摘要:
 燃烧后CO2捕获技术的发展对降低温室效应至关重要。CO2选择性多孔骨架与高分子材料的结合有望开发高性能混合基质膜,用于CO2/N2混合气分离。本工作考察了孔径在CO2和N2动力学直径之间的两种沸石咪唑酯骨架(Zeolitic imidazole frameworks, ZIFs)材料,即ZIF-8和ZIF-93的吸附特性,结果表明ZIF-93由于骨架中醛基的存在具有CO2优先吸附性能,其等摩尔CO2/N2理论吸附选择性为25,远高于ZIF-8(6.5)。通过旋涂法在PVDF载体上制备了具有非对称结构的ZIF-93/Pebax 2533混合基质膜。其中,ZIF-93负载量为12%时,ZIF-93/Pebax混合基质膜展示出最优的CO2/N2混合气分离性能,CO2渗透率为47 GPU,CO2/N2选择性为42。随着原料气中CO2的分压增大,ZIF-93/Pebax混合基质膜的CO2/N2选择性基本不变,实现了高压下CO2的高效分离。
 The development of post-combustion CO2 capture technology is essential to reduce the greenhouse effect. The combination of CO2 selective porous framework and polymer materials is expected to develop high-performance mixed matrix membranes for mixed-gas CO2/N2 separation. This work investigated the adsorption characteristics of two zeolitic imidazole frameworks (ZIFs) materials, namely ZIF-8 and ZIF-90 with pore diameters between the kinetic diameters of CO2 and N2 molecules. The results show that ZIF-93 has preferential adsorption of CO2 due to the presence of aldehyde groups in the framework. The theoretical adsorption selectivity of equimolar CO2/N2 mixture is 25, which is much higher than that of ZIF-8 (6.5). The ZIF-93/Pebax 2533 mixed matrix membrane was then prepared on the PVDF substrate by spin coating. When the ZIF-93 loading is 12%, the ZIF-93/Pebax mixed matrix membrane shows the best CO2/N2 mixed-gas separation performance, with CO2 permeance of 47 GPU and CO2/N2 selectivity of 42. As the partial pressure of CO2 in the feed gas increases, the ZIF-93/Pebax mixed matrix membrane exhibits basically unchanged CO2/N2 selectivity, realizing the efficient separation of CO2 under high pressure.

基金项目:
国家自然科学基金青年科学基金(21808113)

作者简介:
谢亚芳(1995-),女,山东省菏泽市,硕士研究生,硕士,研究方向:混合基质膜合成,E-mail:yafangxie24@163.com

参考文献:
 [1] 冯世超,任吉中,任晓灵,等. 聚醚共聚酰胺/聚乙二醇共混膜的制备及其气体渗透性能的研究[J]. 膜科学与技术, 2012, 32(5):27-33.
[2]Mansourizadeh A, Ismail A F, Abdullah M S, et al. Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives[J]. Journal of Membrane Science, 2010, 355(1-2):200-7.
[3]George G, Bhoria N, AlHallaq S, et al. Polymer membranes for acid gas removal from natural gas[J]. Separation and Purification Technology, 2016, 158:333-56.
[4]Liu J, Hou X, Park H B, et al. High-Performance Polymers for Membrane CO2/N2 Separation[J]. Chemistry-a European Journal, 2016, 22(45):15980-90.
[5]Sanaeepur H, Amooghin A E, Bandehali S, et al. Polyimides in membrane gas separation: Monomer's molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91:80-125.
[6]Alavi S A, Kargari A, Sanaeepur H, et al. Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations[J]. Research on Chemical Intermediates, 2017, 43(5):2959-84.
[7]Li M, Zhang X, Zeng S, et al. Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation[J]. Rsc Advances, 2017, 7(11):6422-31.
[8]Zhao D, Ren J, Wang Y, et al. High CO2 separation performance of Pebax (R)/CNTs/GTA mixed matrix membranes[J]. Journal of Membrane Science, 2017, 521:104-13.
[9]Sanaeepur H, Ahmadi R, Amooghin A E, et al. A novel ternary mixed matrix membrane containing glycerol-modified poly (ether-block-amide) (Pebax 1657)/copper nanoparticles for CO2 separation[J]. Journal of Membrane Science, 2019, 573:234-46.
[10]Nafisi V, Hagg M-B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture[J]. Journal of Membrane Science, 2014, 459:244-55.
[11]Merkel T C, Bondar V I, Nagai K, et al. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)[J]. Journal of Polymer Science Part B-Polymer Physics, 2000, 38(3):415-34.
[12]Rezakazemi M, Amooghin A E, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions[J]. Progress in Polymer Science, 2014, 39(5):817-61.
[13]Dong G, Zhang J, Wang Z, et al. Interfacial Property Modulation of PIM-1 through Polydopamine-Derived Submicrospheres for Enhanced CO2/N2 Separation Performance[J]. Acs Applied Materials & Interfaces, 2019, 11(21):19613-22. 
[14]Casadei R, Giacinti Baschetti M, Yoo M J, et al. Pebax((R)) 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture[J]. Membranes (Basel), 2020, 10(8). 
[15]Park K S, Ni Z, Cote A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10186-91. 
[16]Gao J, Mao H, Jin H, et al. Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation[J]. Microporous and Mesoporous Materials, 2020, 297. 
[17]Li T, Pan Y, Peinemann K-V, et al. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers[J]. Journal of Membrane Science, 2013, 425-426:235-42.
[18]张桃. 高性能PEBA/改性ZIF-8混合基质膜的制备及其CO2分离性能[D]. 山西: 太原理工大学, 2018.
[19]Sutrisna P D, Hou J, Li H, et al. Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes[J]. Journal of Membrane Science, 2017, 524:266-79. 
[20]Jin H, Li Y, Yang W. Adsorption of Biomass-Derived Polyols onto Metal–Organic Frameworks from Aqueous Solutions[J]. Industrial & Engineering Chemistry Research, 2018, 57(35):11963-9. 
[21]Jiang L Y, Chung T S, Kulprathipanja S. Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation[J]. Aiche Journal, 2006, 52(8):2898-908. 
[22]Jeazet H B T, Staudt C, Janiak C. Metal-organic frameworks in mixed-matrix membranes for gas separation[J]. Dalton Transactions, 2012, 41(46):14003-27. 
[23]Basu S, Cano-Odena A, Vankelecom I F J. MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations[J]. Separation and Purification Technology, 2011, 81(1):31-40. 
[24]Eiras D, Labreche Y, Pessan L A. Ultem®/ZIF-8 Mixed Matrix Membranes for Gas Separation: Transport and Physical Properties[J]. Materials Research, 2016, 19(1):220-8. 
[25]Dai Y, Johnson J R, Karvan O, et al. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations[J]. Journal of Membrane Science, 2012, 401-402:76-82. 
[26]Zhu H, Wang L, Jie X, et al. Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(AI)[J]. Acs Applied Materials & Interfaces, 2016, 8(34):22696-704. 
[27]Jin H, Li Y, Liu X, et al. Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks[J]. Chemical Engineering Science, 2015, 124:170-8. 
[28]Ren H, Jin J, Hu J, et al. Affinity between Metal–Organic Frameworks and Polyimides in Asymmetric Mixed Matrix Membranes for Gas Separations[J]. Industrial & Engineering Chemistry Research, 2012, 51(30):10156-64. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号