聚乙烯亚胺改性多壁碳纳米管用于制备高通量复合纳滤膜 |
作者:黑云皓,项 军,田桂英,唐 娜 |
单位: 1.天津科技大学化工与材料学院,天津 300457;2.天津市卤水化工与资源生态化利用重点实验室,天津 300457 |
关键词: 多壁碳纳米管;聚乙烯亚胺改性;水通量;纳滤;截留率; |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2021,41(5):87-96 |
摘要: |
本文以聚砜(PSF)超滤膜为基膜,聚乙烯亚胺(PEI)为水相单体,均苯三甲酰氯(TMC)为有机相单体,将聚乙烯亚胺改性的多壁碳纳米管(MWCNTs-PEI)添加进水相中,采用界面聚合法制备了有机无机杂化复合纳滤膜。分析和表征了改性多壁碳纳米管的微观形貌、化学性质和分散性质及由其改性后的纳滤膜的微观结构、红外光谱和接触角,讨论了MWCNTs-PEI添加量对膜性能的影响。结果表明,当改性多壁碳纳米管的添加量为100mg·L-1时,制备的复合纳滤膜水通量能达到11.95L·m−2·h−1·bar−1,MgCl2的截留率为94.4%。同时,该复合纳滤膜对四种常见的商业染料的截留率均约为98%。 |
In this work, polyethyleneimine modified multi-walled carbon nanotubes were prepared, polysulfone ultrafiltration membrane, polyethyleneimine and trimesoyl chloride were as the base membrane, water phase monomer, and organic phase monomer, respectively. Modified multi-walled carbon nanotubes were added into the water phase, and the organic-inorganic hybrid composite nanofiltration membrane was prepared by the interfacial polymerization method. The microscopic morphology/chemical properties and dispersion properties of the modified multi-walled carbon nanotubes were analyzed and characterized. The microstructure, infrared spectrum and contact angle of the base membrane and nanofiltration membrane were analyzed and characterized, and the influence of the addition amount of polyethyleneimine modified multi-walled carbon nanotubes on the membrane performance was discussed. The results show that the water flux of the composite nanofiltration membrane with 100mg·L-1 modified multi-walled carbon nanotubes can reach 11.95L·m−2·h−1·bar−1, and the rejection rate of MgCl2 is 94.4%. At the same time, the rejection rate for the four common commercial dyes is about 98%. |
基金项目: |
国家自然科学基金(U20A20148),天津市科技项目计划(18YFZCSF00330),教育部科研创新团队培育计划(IRT-17R81),天津市高等学校创新团队培养计划(TD13-5008) |
作者简介: |
黑云皓(1995-),男,天津,硕士研究生,从事纳滤膜制备与膜法水处理研究,E-mail:18722460197@163.com. |
参考文献: |
[1] Cadotte J E, Petersen R J, Larson R E, et al. A new thin-film composite seawater reverse osmosis membrane[J]. Desalination, 1980, 32(1-3): 25-31. [2] Yang Z, Fang W, Wang Z, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. J Membr Sci, 2021, 620. [3] Mollahosseini A, Rahimpour A. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate[J]. J Ind Eng Chem, 2014, 20(4): 1261-1268. [4] Zhang H-Z, Xu Z-L, Shen Q. High-performance nanofiltration membrane intercalated by FeOOH nanorods for water nanofiltration[J]. Desalination, 2021, 498. [5] Lai G S, Lau W J, Goh P S, et al. Development of thin film nanocomposite membrane incorporated with plasma enhanced chemical vapor deposition-modified hydrous manganese oxide for nanofiltration process[J]. Compos, 2019, 176. [6] Jin L M, Yu S L, Shi W X, et al. Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination[J]. Polymer, 2012, 53(23): 5295-5303. [7] Ping X A, Jha B, Zx B, et al. Positively charged nanofiltration membrane based on (MWCNTs-COOK)-engineered substrate for fast and efficient lithium extraction[J].Sep. Purif, 2021. [8] Echaide-Górriz C, Zapata J A, Etxeberría-Benavides M, et al. Polyamide/MOF bilayered thin film composite hollow fiber membranes with tuned MOF thickness for water nanofiltration[J].Sep. Purif, 2020, 236. [9] Li C, Li S, Tian L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. J Membr Sci, 2019, 572: 520-531. [10] Mahdavi M R, Delnavaz M, Vatanpour V. Fabrication and water desalination performance of piperazine–polyamide nanocomposite nanofiltration membranes embedded with raw and oxidized MWCNTs[J]. J Taiwan Inst Chem E, 2017, 75: 189-198. [11] Peydayesh M, Mohammadi T, Bakhtiari O. Water desalination via novel positively charged hybrid nanofiltration membranes filled with hyperbranched polyethyleneimine modified MWCNT[J]. J Ind Eng Chem, 2019, 69: 127-140. [12] Zhao F Y, Ji Y L, Weng X D, et al. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes[J]. ACS Appl. Mater., 2016, 8(10): 6693-700. [13] Granados-Martínez F G, Contreras-Navarrete J J, Ambriz-Torres J M, et al. MWCNTs-polymer composites characterization through spectroscopies: FTIR and Raman[J]. MRS Advances, 2018, 3(63): 1-6. [14] Repalle S, Chen J, Drozd V, et al. The Raman spectroscopic studies of aligned MWCNTs treated under high pressure and high temperature[J]. J Mech Phys Solids, 2010, 71(8): 1150-1153. [15] Manawi Y, Kochkodan V, Hussein M A, et al. Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination?[J]. Desalination, 2016. [16] Yang Z, Huang X, Wang J, et al. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate[J]. Front Chem Sci Eng, 2017, 12(2): 273-282. [17] Zhang H-Z, Xu Z-L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2 + and Ca2 + and good separation for Mg2 + and Li +[J]. Desalination, 2017, 420: 158-166. [18] 俞昌朝, 储月霞, 沈江南,等. 纳米碳管改性聚哌嗪酰胺复合纳滤膜的制备[J]. 高校化学工程学报, 2014, 28(01): 84-91. [19] Zhao H, Qiu S, Wu L, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. J Membr Sci, 2014, 450: 249–256. [20] Zhao F Y, An Q F, Ji Y L, et al. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening[J]. J Membr Sci, 2015, 492: 412-421. [21] Ormanci-Acar T, Tas C E, Keskin B, et al. Thin-film composite nanofiltration membranes with high flux and dye rejection fabricated from disulfonated diamine monomer[J]. . J Membr Sci, 2020, 608. [22] Zhao F-Y, An Q-F, Ji Y-L, et al. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening[J]. J Membr Sci, 2015, 492: 412-421. [23] Shen J N, Yu C C, Ruan H M, et al. Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization[J]. J Membr Sci, 2013, 442: 18-26. [24] Vatanpour V, Esmaeili M, Farahani M H D A. Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes[J]. J Membr Sci, 2014, 466: 70-81. [25] 江志彬, 杨浩, 李诗情,等. 荷正电聚酰胺有机/无机杂化复合纳滤膜的制备和脱盐性能研究[J]. 现代化工, 2018, 38(03): 156-160. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号