纳滤耦合电渗析工艺处理镍电积阳极液研究
作者:徐 强,王小贞,张鹏云,王应平
单位: 1.甘肃省膜科学技术研究院有限公司,甘肃省膜分离工程技术研究中心,兰州 730020; 2.中共甘肃省委党校,兰州 730070
关键词: 阳极液 酸盐分离 纳滤膜 电渗析
DOI号:
分类号: X758
出版年,卷(期):页码: 2021,41(5):130-138

摘要:
 为降低镍电积生产工艺中的纯碱消耗,采用纳滤-电渗析耦合技术对电积镍阳极液进行酸盐分离并回收稀酸,首先利用特种纳滤膜将阳极液中硫酸镍与硫酸分离,然后利用电渗析技术对分离后产生的稀酸液进行浓缩回用。结果表明,在料液温度55℃、运行压力3.5Mpa、流量1000L/h的条件下,该纳滤膜可实现镍离子截留率为91.36%,氢离子脱除率为73.07%,具有较好的酸盐分离效果。电渗析可对分离出的稀酸进行浓缩,最高可使硫酸浓度提高4.3倍达33.8g/L。纳滤膜耦合电渗析工艺处理镍电积阳极液工艺无废水排放,具有良好的经济效益和环境效益。
 In order to reduce the Na2CO3 consumption of nickel electrowinning, the coupling technologies of nanofiltration and electrodialysis ware used to separate acid-salt from the anodic solution and recover the dilute acid.. The nickel sulfate in the anodic solution was separated from the sulfuric acid by special nanofiltration membrane, followed by the dilute acid being concentrated and reused by electrodialysis. The results show that under the conditions of feed temperature of 55℃, operating pressure 3.5 MPa and flow rate of 1000L/h, the retention rate of nickel ion and the removal rate of hydrogen ion were 91.36% and 73.07% respectively.There was a good separation effect for acid-salt by nanofiltration. Electrodialysis can concentrate the separated dilute acid. A maximum concentration of sulfuric acid was increased by 4.3 times to 33.8 g/L. The anode liquor of nickel electrowinning was treated by nanofiltration coupled with electrodialysis, showing advantages of no waste water discharge and good economic and environmental benefits. 

基金项目:
甘肃省重点研发计划项目工业类(20YF3GA004)

作者简介:
徐强(1981-),男,工程师,研究方向:膜分离技术应用,

参考文献:
 [1] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254.
[2] Strathmann H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288.
[3] M. Dalwani, G. Bargeman, S.S. Hosseiny, M. Boerrigter, M. Wessling, N.E. Benes, Sulfonated poly(ether ether ketone) based composite membranes for nanofifiltration of acidic and alkaline media, J. Membr. Sci. 381 (2011) 81–89. 
[4] M. Liu, G. Yao, Q. Cheng, M. Ma, S. Yu, C. Gao, Acid stable thin-fifilm composite mem
brane for nanofifiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP), J. Membr. Sci. 415–416 (2012) 122–131
[5] 陈如,陈庆. 纳滤法回收铝箔腐蚀废酸中磷酸的研究[J]. 辽宁化工, 2020, v.49;No.468(10):41-43.
[6] 王少明, 王建友, 卢会霞,等. 纳滤膜技术浓缩分离含镍离子溶液[J]. 水处理技术, 2010(8):92-95.
[7] 胡明, 张力萍, 陶柏润,等. 电渗析处理污酸进行酸浓缩与水回用的研究[C]// 第五届全国膜分离技术在冶金工业中应用研讨会论文集. 0.
[8] 杭晓风, 窦卫军, 陈向荣,等. 纳滤—电渗析处理纤维染色废水反渗透浓水研究[J]. 水处理技术, 2020, v.46;No.336(01):90-94.
[9] 田秉晖、刘芷源、李昱含. 基于"趋零排放"的高盐废水电渗析浓缩技术研究进展[J]. 环境工程学报, 2020, v.14(09):122-133.
[10] M.J.H. Snow, D. de Winter, R. Buckingham, J. Campbell, J. Wagner, New techniques for extreme conditions: High temperature reverse osmosis and nanofifiltration, Desalination 105 (1996) 57.
[11] Mattias Nilsson,Gun Trägårdh,Karin Östergren. The influence of pH, salt and temperature on nanofiltration performance[J]. Journal of Membrane Science,2007,312(1).
[12] Figoli A, Cassano A, Criscuoli A, et al. Influence of operating parameters on the arsenic removal by nanofiltration[J]. Water research, 2010, 44(1): 97-104.
[13] 邱实, 吴礼光, 张林,等. 纳滤分离机理[J]. 水处理技术, 2009(01):20-24.
[14]V. Freger, T. Arnot, J. Howell, Separation of concentrated organic/inorganic salt mixtures by nanofifiltration, J. Membr. Sci. 178 (2000) 185.
[15] Her N, Amy G, Jarusutthirak C. Nanofifiltration foulant identifification and control: Seasonal variations in inorganic and organic foulants. Proceedings of AWWA 2001 Membrane Technology Conference, Texas, 4–7, 2001. 
[16] Gherasim C V , Cuhorka, Ji?í, Mikulá?ek, Petr. Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: Experimental results and modelling[J]. Journal of Membrane Science, 2013, 436:132-144.
[17] Nyström M, Kaipia L, Luque S. Fouling and retention of nanofiltration membranes[J]. Journal of membrane science, 1995, 98(3): 249-262.
[18] Vrouwenvelder JS, van der Kooij D. Diagnosis, prediction and prevention of biofouling of NF and RO membranes. Desalination 2001;139:65–71. 
[19] D. Roy, M. Rahni, P. Pierre, V. Yargeau, Forward osmosis for the concentration and reuse of process saline wastewater, Chem. Eng. J. 287 (2016) 277–284.
[20] T. Rottiers, K. Ghyselbrecht, B. Meesschaert, B. Van der Bruggen, L. Pinoy, Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions, Chem. Eng. Sci. 113 (2014) 95–100.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号