荷负电中空纤维膜的制备、微结构调控及渗透性能研究
作者:武志国12杨敬葵3秦舒浩3崔振宇1
单位: 1天津工业大学材料科学与工程学院,天津,300387;2苏伊士水务技术(上海)有限公司,上海,200135;3贵州省材料产业技术研究院,贵阳,550014
关键词: 热致相分离;聚偏氟乙烯;表面沉积;超滤;微结构调控
DOI号:
分类号: TB34
出版年,卷(期):页码: 2021,41(6):1-9

摘要:
 本文以聚偏氟乙烯(PVDF)和苯乙烯-马来酸酐钠盐(SMA钠盐)为原料进行共混,经热致相分离技术制备“PVDF/SMA钠盐”中空纤维共混超滤膜,重点考察SMA钠盐的添加量对铸膜液体系成膜过程、膜微结构、亲水性和渗透性能的影响规律。结果表明,随着SMA钠盐添加量的增加,膜截面由球上带网结构逐渐转变为蜂窝孔结构,表明SMA钠盐具有非稀释剂的功效。同时,SMA钠盐与PVDF链段之间发生缠结并沉积在固化的PVDF表面以及膜孔内部,阻碍了PVDF的结晶而降低了膜外皮层厚度,并且提高了膜表面的致密度、荷电性、亲水性,从而提高了渗透性能。当PVDF/SMA钠盐质量比为5/1时,膜纯水渗透率为128.4 Lm-2h-1bar-1,对牛血清蛋白(BSA)的截留率高达96.1%,渗透率恢复率为84.2%。
  In this work, polyvinylidene fluoride (PVDF) and styrene-co-maleic anhydride-Na (SMA-Na) were used to prepare PVDF/SMA-Na ultrafiltation membrane. The influence of SMA-Na on the membrane formation process,microstructure regulation, hydrophilicity and permeability was investigated. The results showed that with the increase of SMA-Na, the microstructure changed from network on spherulite to cellular pore, which indicated the non-dilute function of SMA-Na. In addition, the entanglement of segments between PVDF and SMA-Na and its deposition on both PVDF matrix and the inside of pore hindered the PVDF crystallization, decreased the thickness of skin-layer, and at the same time increased the density of skin-layer, charge and hydrophilicity. They all increased the permeability. When the mass ratio of PVDF/SMA-Na is 5/1, the pure water permeability reached 128.4 Lm-2h-1bar-1,the rejection of BSA is as high as 96.1% and permeability recovery rate is 84.2%.

基金项目:
国家自然科学基金项目(21978213,21576209)。

作者简介:
武志国(1989-),男,山西太原人,硕士,从事聚合物分离膜及染料废水处理研究

参考文献:
 [1] G.-d. Kang, Y.-m. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, Journal of Membrane Science[J]. 2014, 463: 145-165.
[2] D.-M. Wang, J.-Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation, Current Opinion in Chemical Engineering[J]. 2013, 2:229-237.
[3] J.F. Kim, J.H. Kim, Y.M. Lee, , et al. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review, AIChE J[J]. 2016, 62: 461-490.
[4] M. Liu, S.H. Liu, Z.L. Xu, et al. Formation of microporous polymeric membranes via thermally induced phase separation: A review, Frontiers of Chemical Science and Engineering[J].2016, 10:57-75..
[5] M.E. Vanegas, R. Quijada, D. Serafini, Microporous membranes prepared via thermally induced phase separation from metallocenic syndiotactic polypropylenes, Polymer[J]. 2009, 50:2081-2086.
[6] L. Yan, J. Wang, Development of a new polymer membrane-PVB/PVDF blended membrane, Desalination [J]. 2011, 281:455–461.
[7] Ting Ma, Zhenyu Cui, Ying Wu, et al. Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation:Ⅰ. Effect of PMMA on the membrane formation process and the properties, Journal of Membrane Science[J].2013, 444: 213-222..
[8] Qiao Cheng, Zhenyu Cui, Jiangbo Li, et al. Preparation and performance of polymer electrolyte based on poly(vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery, Journal of Power Sources[J]. 2014, 266: 401-413.
[9] Zhenyu Cui, Haobo Shi, Jinyue Ding, et al. Fabrication of poly (vinylidene fluoride) separator with better thermostability and electrochemical performance for lithium ion battery by blending polyester, Materials Letters[J]. 2018, 228:466–469..
[10] Zhiguo Wu, Zhenyu Cui, Tianyu Li, et al. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process, Applied Surface Science[J]. 2017, 419: 429-438.
[11] Zhenyu Cui, Wei Li, Haiyi Zeng, et al. Fabricating PVDF hollow fiber microfiltration membrane with a tenon-connection structure via the thermally induced phase separation process toenhance strength and permeability, European Polymer Journal[J].2019, 111: 49–62.
[12] Pengfei Zhang, Shang Xiang, Hao Wang, et al. Understanding the multiple functions of styrene-co-maleic anhydride in fabricating polyvinylidene fluoride hollow fiber membrane via coupled phase inversion process and its effect on surface infiltration behavior and membrane permeability, Journal of Membrane Science[J]. 2019, 590: 117269.
[13] Zhenyu Cui, Xiuxiu Tang, Wei Lin, et al. EVOH in situ fibrillation and its effect of strengthening, toughening and hydrophilic modification on PVDF hollow fiber microfiltration membrane via TIPS process, Journal of Materials Science[J], 2019,54(7): 5971–5987.
[14] Ye C, An Q, Wu J, et al. Nanofiltration membranes consisting of quaternized polyelectrolyte complex nanoparticles for heavy metal removal[J]. Chemical Engineering Journal, 2019, 359:994-1005

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号